Diagnostic performance of artificial intelligence algorithms for detection of pulmonary involvement by COVID-19 based on portable radiography.

Ricardo Luis Cobeñas, María de Vedia, Juan Florez, Daniela Jaramillo, Luciana Ferrari, Ricardo Re
Author Information
  1. Ricardo Luis Cobeñas: Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
  2. María de Vedia: Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
  3. Juan Florez: Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
  4. Daniela Jaramillo: Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
  5. Luciana Ferrari: Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
  6. Ricardo Re: Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.

Abstract

Introduction and objectives: To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX).
Material and methods: Prospective observational study that included patients admitted for suspected COVID-19 infection in a university hospital between July and November 2020. The reference standard of pulmonary involvement by SARS-CoV-2 comprised a positive PCR test and low-tract respiratory symptoms.
Results: 493 patients were included, 140 (28%) with positive PCR and 32 (7%) with SARS-CoV-2 pneumonia. The AI-B algorithm had the best diagnostic performance (areas under the ROC curve AI-B 0.73, vs. AI-A 0.51, vs. AI-C 0.57). Using a detection threshold greater than 55%, AI-B had greater diagnostic performance than the specialist [(area under the curve of 0.68 (95% CI 0.64-0.72), vs. 0.54 (95% CI 0.49-0.59)].
Conclusion: AI algorithms based on portable RX enabled a diagnostic performance comparable to human assessment for the detection of SARS-CoV-2 lung involvement.

Keywords

References

  1. Radiology. 2020 Sep;296(3):E166-E172 [PMID: 32384019]
  2. PeerJ Comput Sci. 2021 May 26;7:e551 [PMID: 34141883]
  3. Eur Radiol Exp. 2020 Dec 15;4(1):68 [PMID: 33319321]
  4. J Med Internet Res. 2020 Aug 10;22(8):e19104 [PMID: 32584780]
  5. J Infect Public Health. 2020 Oct;13(10):1381-1396 [PMID: 32646771]
  6. IEEE Rev Biomed Eng. 2021;14:4-15 [PMID: 32305937]

Word Cloud

Created with Highcharts 10.0.00performancediagnosticinvolvementSARS-CoV-2intelligencealgorithmspulmonarybasedportableRXCOVID-19AI-BvsdetectionartificialAIradiographyincludedpatientspositivePCRcurvegreater95%CIIntroductionobjectives:evaluatedifferentidentificationchestMaterialmethods:ProspectiveobservationalstudyadmittedsuspectedinfectionuniversityhospitalJulyNovember2020referencestandardcomprisedtestlow-tractrespiratorysymptomsResults:49314028%327%pneumoniaalgorithmbestareasROC73AI-A51AI-C57Usingthreshold55%specialist[area6864-0725449-059]Conclusion:enabledcomparablehumanassessmentlungDiagnosticArtificialLungMachinelearningPneumoniaThoracic

Similar Articles

Cited By