Idiosyncratic biases in the perception of medical images.

Zixuan Wang, Mauro Manassi, Zhihang Ren, Cristina Ghirardo, Teresa Canas-Bajo, Yuki Murai, Min Zhou, David Whitney
Author Information
  1. Zixuan Wang: Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.
  2. Mauro Manassi: School of Psychology, University of Aberdeen, King's College, Aberdeen, United Kingdom.
  3. Zhihang Ren: Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.
  4. Cristina Ghirardo: Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.
  5. Teresa Canas-Bajo: Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.
  6. Yuki Murai: Center for Information and Neural Networks, National Institute of Information and Communications Technology, Koganei, Japan.
  7. Min Zhou: Department of Pediatrics, The First People's Hospital of Shuangliu District, Chengdu, Sichuan, China.
  8. David Whitney: Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.

Abstract

Introduction: Radiologists routinely make life-altering decisions. Optimizing these decisions has been an important goal for many years and has prompted a great deal of research on the basic perceptual mechanisms that underlie radiologists' decisions. Previous studies have found that there are substantial individual differences in radiologists' diagnostic performance (e.g., sensitivity) due to experience, training, or search strategies. In addition to variations in sensitivity, however, another possibility is that radiologists might have perceptual biases-systematic misperceptions of visual stimuli. Although a great deal of research has investigated radiologist sensitivity, very little has explored the presence of perceptual biases or the individual differences in these.
Methods: Here, we test whether radiologists' have perceptual biases using controlled artificial and Generative Adversarial Networks-generated realistic medical images. In Experiment 1, observers adjusted the appearance of simulated tumors to match the previously shown targets. In Experiment 2, observers were shown with a mix of real and GAN-generated CT lesion images and they rated the realness of each image.
Results: We show that every tested individual radiologist was characterized by unique and systematic perceptual biases; these perceptual biases cannot be simply explained by attentional differences, and they can be observed in different imaging modalities and task settings, suggesting that idiosyncratic biases in medical image perception may widely exist.
Discussion: Characterizing and understanding these biases could be important for many practical settings such as training, pairing readers, and career selection for radiologists. These results may have consequential implications for many other fields as well, where individual observers are the linchpins for life-altering perceptual decisions.

Keywords

References

  1. J Am Coll Radiol. 2006 Jun;3(6):402-8 [PMID: 17412094]
  2. Curr Biol. 2010 Jan 26;20(2):137-42 [PMID: 20060296]
  3. Nat Rev Neurosci. 2011 Apr;12(4):231-42 [PMID: 21407245]
  4. Psychol Sci. 2012 Feb;23(2):169-77 [PMID: 22222218]
  5. Neuropsychologia. 2012 Jan;50(2):334-40 [PMID: 22192636]
  6. J Natl Cancer Inst. 2002 Sep 18;94(18):1373-80 [PMID: 12237283]
  7. AJR Am J Roentgenol. 1984 Nov;143(5):1105-9 [PMID: 6333159]
  8. Cogn Psychol. 1991 Jul;23(3):420-56 [PMID: 1884598]
  9. Neuron. 2013 Sep 4;79(5):1025-34 [PMID: 23932491]
  10. Chest. 1999 Mar;115(3):720-4 [PMID: 10084482]
  11. Radiology. 2009 Dec;253(3):641-51 [PMID: 19864507]
  12. Ann Rheum Dis. 2003 Jun;62(6):519-25 [PMID: 12759287]
  13. Cogn Res Princ Implic. 2021 Oct 14;6(1):65 [PMID: 34648124]
  14. Vision Res. 2017 Dec;141:282-292 [PMID: 27919676]
  15. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5238-41 [PMID: 20176944]
  16. J Vis. 2013 Aug 06;13(10): [PMID: 23922445]
  17. Acad Radiol. 2019 Jun;26(6):717-723 [PMID: 30064917]
  18. Psychol Sci. 2018 Oct;29(10):1692-1705 [PMID: 30188806]
  19. J Eval Clin Pract. 2017 Aug;23(4):870-874 [PMID: 28374457]
  20. Sci Rep. 2019 Dec 27;9(1):19937 [PMID: 31882657]
  21. Breast Cancer Res Treat. 2006 Dec;100(3):309-18 [PMID: 16819566]
  22. BMC Health Serv Res. 2008 Apr 25;8:91 [PMID: 18439248]
  23. Iperception. 2018 Sep 23;9(5):2041669518800507 [PMID: 30263104]
  24. J Cogn Neurosci. 2003 Nov 15;15(8):1176-94 [PMID: 14709235]
  25. Front Hum Neurosci. 2019 Jun 25;13:213 [PMID: 31293407]
  26. Ann Oncol. 2008 Apr;19(4):614-22 [PMID: 18024988]
  27. Invest Radiol. 1978 May-Jun;13(3):175-81 [PMID: 711391]
  28. Radiology. 1992 Jul;184(1):39-43 [PMID: 1609100]
  29. AJR Am J Roentgenol. 2016 Dec;207(6):1210-1214 [PMID: 27732066]
  30. Invest Radiol. 1990 Sep;25(9):994-8 [PMID: 2132306]
  31. Cogn Res Princ Implic. 2022 Feb 2;7(1):10 [PMID: 35107667]
  32. J Vis. 2020 Jun 3;20(6):4 [PMID: 32511665]
  33. Radiology. 2002 Sep;224(3):871-80 [PMID: 12202727]
  34. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12887-92 [PMID: 26417086]
  35. Arch Intern Med. 1996 Jan 22;156(2):209-13 [PMID: 8546556]
  36. Br J Radiol. 2019 Jul;92(1099):20190136 [PMID: 31166769]
  37. J Womens Health. 1998 May;7(4):443-9 [PMID: 9611702]
  38. Curr Biol. 2010 Dec 7;20(23):2112-6 [PMID: 21109440]
  39. Trends Cogn Sci. 2011 Jul;15(7):327-34 [PMID: 21665518]
  40. Psychol Sci. 2011 Dec;22(12):1583-90 [PMID: 22082611]
  41. AJR Am J Roentgenol. 2010 Jul;195(1):117-25 [PMID: 20566804]
  42. J Vis. 2021 May 3;21(5):26 [PMID: 34029369]
  43. Invest Radiol. 1975 Jan-Feb;10(1):62-7 [PMID: 1112651]
  44. Vision Res. 2017 Dec;141:4-15 [PMID: 29129731]
  45. Front Psychol. 2017 Nov 28;8:2072 [PMID: 29234298]
  46. Psychol Bull. 1958 Jul;55(4):177-96 [PMID: 13567963]
  47. Eur Urol Focus. 2019 Jul;5(4):592-599 [PMID: 29226826]
  48. Radiology. 2006 May;239(2):385-91 [PMID: 16569780]
  49. J Neurosci. 1997 Jun 1;17(11):4302-11 [PMID: 9151747]
  50. Neuropsychologia. 2006;44(4):576-85 [PMID: 16169565]
  51. Network. 2003 Aug;14(3):391-412 [PMID: 12938764]
  52. Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1937-1942 [PMID: 29358377]
  53. J Hum Genet. 2021 Mar;66(3):261-271 [PMID: 32939015]
  54. Radiology. 1972 Jun;103(3):523-8 [PMID: 5022947]
  55. Nat Neurosci. 2000 Feb;3(2):191-7 [PMID: 10649576]
  56. Atten Percept Psychophys. 2010 Jul;72(5):1205-17 [PMID: 20601701]
  57. Science. 2001 Sep 28;293(5539):2425-30 [PMID: 11577229]
  58. Trends Cogn Sci. 2002 Jun 1;6(6):255-260 [PMID: 12039607]
  59. J Vis. 2014 Oct 13;14(12): [PMID: 25311304]
  60. N Engl J Med. 1994 Dec 1;331(22):1493-9 [PMID: 7969300]
  61. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10244-10249 [PMID: 28874578]
  62. Br J Radiol. 2015 May;88(1049):20140511 [PMID: 25756868]
  63. Acad Radiol. 1996 Feb;3(2):137-44 [PMID: 8796654]
  64. Clin Radiol. 2011 May;66(5):481-3 [PMID: 21295289]
  65. Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14990-5 [PMID: 26627250]
  66. Urology. 2019 May;127:68-73 [PMID: 30807773]
  67. Front Psychol. 2020 Nov 06;11:585921 [PMID: 33240177]
  68. Cogn Res Princ Implic. 2017;2(1):36 [PMID: 28989953]
  69. J Cogn Neurosci. 1997 Fall;9(5):555-604 [PMID: 23965118]
  70. J Med Screen. 2004;11(4):187-93 [PMID: 15624239]
  71. Appl Cogn Psychol. 2016 Jan-Feb;30(1):81-91 [PMID: 30122803]
  72. Skeletal Radiol. 2010 Jul;39(7):661-7 [PMID: 19826811]
  73. Psychol Rev. 1998 Jul;105(3):482-98 [PMID: 9697428]
  74. Front Psychol. 2020 Jun 12;11:1149 [PMID: 32612554]
  75. J Med Imaging Radiat Oncol. 2012 Apr;56(2):173-8 [PMID: 22498190]
  76. J Exp Psychol Gen. 2020 Jan;149(1):31-41 [PMID: 31144835]
  77. Curr Probl Diagn Radiol. 2016 Mar-Apr;45(2):101-6 [PMID: 26122926]
  78. Am J Public Health. 1995 Jun;85(6):837-9 [PMID: 7762720]
  79. Anat Sci Educ. 2015 Mar-Apr;8(2):111-9 [PMID: 24953052]
  80. Cogn Res Princ Implic. 2020 Feb 3;5(1):4 [PMID: 32016647]
  81. Br J Radiol. 2020 Feb 1;93(1106):20190610 [PMID: 31617741]
  82. Psychon Bull Rev. 2009 Apr;16(2):252-7 [PMID: 19293090]
  83. Atten Percept Psychophys. 2019 Jul;81(5):1220-1227 [PMID: 31152373]
  84. Psychol Rev. 2019 Mar;126(2):226-251 [PMID: 30802123]
  85. J Digit Imaging. 2018 Feb;31(1):32-41 [PMID: 28681097]
  86. Proc Biol Sci. 2020 Jul 8;287(1930):20200825 [PMID: 32635869]
  87. Curr Biol. 2015 Oct 19;25(20):2684-9 [PMID: 26441352]
  88. Curr Biol. 2017 Jul 24;27(14):R700-R701 [PMID: 28743014]
  89. J Med Imaging (Bellingham). 2018 Jul;5(3):036501 [PMID: 30035154]
  90. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10218-10224 [PMID: 32341163]
  91. J Exp Psychol Gen. 2012 Feb;141(1):19-25 [PMID: 21517206]
  92. IS&T Int Symp Electron Imaging. 2021;33: [PMID: 36741986]

Grants

  1. R01 CA236793/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0perceptualbiasesindividualmedicaldecisionsdifferencesimagesmanyradiologists'sensitivityradiologistobserversimageperceptionlife-alteringimportantgreatdealresearchperformancetrainingradiologistsExperimentshownsettingsmayIntroduction:RadiologistsroutinelymakeOptimizinggoalyearspromptedbasicmechanismsunderliePreviousstudiesfoundsubstantialdiagnosticegdueexperiencesearchstrategiesadditionvariationshoweveranotherpossibilitymightbiases-systematicmisperceptionsvisualstimuliAlthoughinvestigatedlittleexploredpresencetheseMethods:testwhetherusingcontrolledartificialGenerativeAdversarialNetworks-generatedrealistic1adjustedappearancesimulatedtumorsmatchpreviouslytargets2mixrealGAN-generatedCTlesionratedrealnessResults:showeverytestedcharacterizeduniquesystematicsimplyexplainedattentionalcanobserveddifferentimagingmodalitiestasksuggestingidiosyncraticwidelyexistDiscussion:CharacterizingunderstandingpracticalpairingreaderscareerselectionresultsconsequentialimplicationsfieldswelllinchpinsIdiosyncraticGAN-simulated

Similar Articles

Cited By