Rates of ultrasonic vocalizations are more strongly related than acoustic features to non-vocal behaviors in mouse pups.

Nicole M Pranic, Caroline Kornbrek, Chen Yang, Thomas A Cleland, Katherine A Tschida
Author Information
  1. Nicole M Pranic: Department of Psychology, Cornell University, Ithaca, NY, United States.
  2. Caroline Kornbrek: Department of Psychology, Cornell University, Ithaca, NY, United States.
  3. Chen Yang: Department of Psychology, Cornell University, Ithaca, NY, United States.
  4. Thomas A Cleland: Department of Psychology, Cornell University, Ithaca, NY, United States.
  5. Katherine A Tschida: Department of Psychology, Cornell University, Ithaca, NY, United States.

Abstract

Mouse pups produce. ultrasonic vocalizations (USVs) in response to isolation from the nest (i.e., isolation USVs). Rates and acoustic features of isolation USVs change dramatically over the first two weeks of life, and there is also substantial variability in the rates and acoustic features of isolation USVs at a given postnatal age. The factors that contribute to within age variability in isolation USVs remain largely unknown. Here, we explore the extent to which non-vocal behaviors of mouse pups relate to the within age variability in rates and acoustic features of their USVs. We recorded non-vocal behaviors of isolated C57BL/6J mouse pups at four postnatal ages (postnatal days 5, 10, 15, and 20), measured rates of isolation USV production, and applied a combination of pre-defined acoustic feature measurements and an unsupervised machine learning-based vocal analysis method to examine USV acoustic features. When we considered different categories of non-vocal behavior, our analyses revealed that mice in all postnatal age groups produce higher rates of isolation USVs during active non-vocal behaviors than when lying still. Moreover, rates of isolation USVs are correlated with the intensity (i.e., magnitude) of non-vocal body and limb movements within a given trial. In contrast, USVs produced during different categories of non-vocal behaviors and during different intensities of non-vocal movement do not differ substantially in their acoustic features. Our findings suggest that levels of behavioral arousal contribute to within age variability in rates, but not acoustic features, of mouse isolation USVs.

Keywords

References

  1. Psychol Rev. 2001 Jan;108(1):83-95 [PMID: 11212634]
  2. Curr Biol. 2016 Oct 10;26(19):R880-R881 [PMID: 27728788]
  3. Science. 2017 Mar 31;355(6332):1411-1415 [PMID: 28360327]
  4. Eur J Appl Physiol Occup Physiol. 1995;71(1):1-27 [PMID: 7556128]
  5. Elife. 2021 May 14;10: [PMID: 33988503]
  6. Behav Genet. 1997 Mar;27(2):133-43 [PMID: 9145552]
  7. Psychosom Med. 1987 Nov-Dec;49(6):562-78 [PMID: 3423164]
  8. PLoS One. 2016 Aug 23;11(8):e0160409 [PMID: 27552099]
  9. Behav Brain Res. 2013 Aug 15;251:50-64 [PMID: 22820233]
  10. Sci Rep. 2019 Jul 22;9(1):10539 [PMID: 31332218]
  11. Elife. 2020 Dec 01;9: [PMID: 33258770]
  12. J Speech Lang Hear Res. 2020 Aug 10;63(8):2680-2694 [PMID: 32762490]
  13. J Neurophysiol. 2017 Mar 1;117(3):1030-1042 [PMID: 27974449]
  14. Anim Behav. 1965 Apr-Jul;13(2):234-41 [PMID: 5835840]
  15. Front Behav Neurosci. 2017 Dec 15;11:243 [PMID: 29326565]
  16. Front Zool. 2015 Aug 24;12 Suppl 1:S17 [PMID: 26816516]
  17. Behav Genet. 1998 Jul;28(4):315-25 [PMID: 9803024]
  18. PLoS One. 2018 Oct 30;13(10):e0199929 [PMID: 30376572]
  19. Behav Brain Res. 2013 Nov 1;256:677-89 [PMID: 23994547]
  20. Brain Res. 2007 Aug 13;1163:91-9 [PMID: 17659265]
  21. J Physiol Sci. 2017 Jan;67(1):45-62 [PMID: 27535569]
  22. Dev Psychobiol. 1982 May;15(3):221-7 [PMID: 7095288]
  23. Genes Brain Behav. 2011 Feb;10(1):35-43 [PMID: 20345893]
  24. Elife. 2015 May 28;4: [PMID: 26020291]
  25. J Physiol. 2009 Jul 15;587(Pt 14):3539-59 [PMID: 19491247]
  26. Front Behav Neurosci. 2016 Sep 29;10:184 [PMID: 27746726]
  27. Behav Genet. 2005 Jan;35(1):73-83 [PMID: 15674534]
  28. Am J Physiol. 1959 May;196(5):1160-2 [PMID: 13649951]
  29. Neuron. 2019 Aug 7;103(3):459-472.e4 [PMID: 31204083]
  30. Science. 1983 Jan 21;219(4582):251-6 [PMID: 6849136]
  31. Behav Neurosci. 2008 Apr;122(2):310-30 [PMID: 18410171]
  32. Behav Processes. 1994 Nov;32(3):285-95 [PMID: 24896507]
  33. Respir Physiol Neurobiol. 2014 May 1;195:44-9 [PMID: 24566392]
  34. PLoS Comput Biol. 2020 Oct 15;16(10):e1008228 [PMID: 33057332]
  35. J Physiol. 2002 Jun 1;541(Pt 2):653-63 [PMID: 12042369]
  36. PLoS Biol. 2005 Dec;3(12):e386 [PMID: 16248680]
  37. Behav Neural Biol. 1987 Sep;48(2):197-205 [PMID: 2823790]
  38. Neuron. 2022 Feb 16;110(4):644-657.e6 [PMID: 34998469]
  39. Neurosci Biobehav Rev. 2014 Jun;43:199-212 [PMID: 24726578]
  40. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E84-92 [PMID: 22160700]
  41. Front Behav Neurosci. 2015 Apr 01;9:76 [PMID: 25883559]
  42. J Neurosci. 2011 Feb 23;31(8):2895-905 [PMID: 21414911]
  43. J Exp Zool A Ecol Genet Physiol. 2013 Apr;319(4):213-24 [PMID: 23423862]
  44. Bioinformatics. 2020 Jun 1;36(11):3418-3421 [PMID: 32176273]
  45. Behav Genet. 2002 Jul;32(4):267-73 [PMID: 12211626]
  46. Elife. 2019 Jul 16;8: [PMID: 31310236]
  47. Nat Neurosci. 2020 Mar;23(3):411-422 [PMID: 32066980]
  48. BMC Biol. 2022 Jan 7;20(1):3 [PMID: 34996429]
  49. Nat Rev Neurosci. 2018 Jun;19(6):351-367 [PMID: 29740175]
  50. Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8095-8100 [PMID: 28698373]
  51. Neuroscience. 2007 Feb 9;144(3):1120-32 [PMID: 17137720]
  52. Science. 1981 Feb 20;211(4484):844-6 [PMID: 7466362]
  53. iScience. 2020 Nov 16;23(12):101804 [PMID: 33299974]
  54. Behav Neurosci. 2003 Aug;117(4):840-53 [PMID: 12931968]
  55. Elife. 2021 Mar 31;10: [PMID: 33787490]
  56. Neurosci Biobehav Rev. 2009 Apr;33(4):508-15 [PMID: 18771687]
  57. PLoS One. 2011 Mar 09;6(3):e17460 [PMID: 21408007]
  58. Compr Physiol. 2012 Oct;2(4):2443-69 [PMID: 23720253]
  59. Neurobiol Learn Mem. 2005 Nov;84(3):228-40 [PMID: 16115784]
  60. PLoS One. 2016 Feb 03;11(2):e0147102 [PMID: 26841117]
  61. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3412-22 [PMID: 14714820]
  62. Neurosci Biobehav Rev. 2002 Mar;26(2):235-58 [PMID: 11856561]
  63. Dev Psychobiol. 1972;5(4):371-87 [PMID: 4609822]
  64. Am J Phys Med. 1963 Feb;42:1-70 [PMID: 14002762]
  65. Nature. 2020 Nov;587(7834):426-431 [PMID: 33029014]
  66. Front Behav Neurosci. 2013 Nov 19;7:159 [PMID: 24312027]
  67. Front Behav Neurosci. 2014 Nov 18;8:399 [PMID: 25477796]
  68. Front Neurosci. 2015 Mar 18;9:73 [PMID: 25852455]
  69. J Neurophysiol. 2011 Nov;106(5):2580-92 [PMID: 21832032]
  70. PLoS One. 2008 Aug 27;3(8):e3067 [PMID: 18728777]
  71. PLoS One. 2012;7(7):e40782 [PMID: 22815817]
  72. J Neurophysiol. 2016 Aug 1;116(2):753-64 [PMID: 27250909]
  73. Dev Psychobiol. 1998 Nov;33(3):249-56 [PMID: 9810475]
  74. J Physiol. 2019 Jan;597(1):173-191 [PMID: 30296333]
  75. J Neurosci. 2013 Feb 20;33(8):3276-83 [PMID: 23426656]
  76. Behav Genet. 2005 Jan;35(1):19-29 [PMID: 15674530]
  77. Behav Neurosci. 1990 Oct;104(5):808-17 [PMID: 2244987]
  78. J Nerv Ment Dis. 1980 Sep;168(9):526-34 [PMID: 7411126]
  79. J Physiol. 1983 Oct;343:1-16 [PMID: 6644612]
  80. Dev Psychobiol. 2004 Jan;44(1):37-44 [PMID: 14704988]
  81. Sci Rep. 2019 May 30;9(1):8100 [PMID: 31147563]
  82. Physiol Behav. 2015 Jan;138:94-100 [PMID: 25447483]
  83. Front Behav Neurosci. 2016 Sep 28;10:182 [PMID: 27733819]

Word Cloud

Created with Highcharts 10.0.0USVsisolationacousticnon-vocalfeaturesratesagebehaviorsmousepupsvariabilitypostnatalwithinultrasonicdifferentproducevocalizationsieRatesgivencontributeUSVcategoriesMouseresponsenestchangedramaticallyfirsttwoweekslifealsosubstantialfactorsremainlargelyunknownexploreextentrelaterecordedisolatedC57BL/6Jfouragesdays5101520measuredproductionappliedcombinationpre-definedfeaturemeasurementsunsupervisedmachinelearning-basedvocalanalysismethodexamineconsideredbehavioranalysesrevealedmicegroupshigheractivelyingstillMoreovercorrelatedintensitymagnitudebodylimbmovementstrialcontrastproducedintensitiesmovementdiffersubstantiallyfindingssuggestlevelsbehavioralarousalstronglyrelatedpupvocalization

Similar Articles

Cited By