Protein model refinement for cryo-EM maps using AlphaFold2 and the DAQ score.

Genki Terashi, Xiao Wang, Daisuke Kihara
Author Information
  1. Genki Terashi: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
  2. Xiao Wang: Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
  3. Daisuke Kihara: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.

Abstract

As more protein structure models have been determined from cryogenic electron microscopy (cryo-EM) density maps, establishing how to evaluate the model accuracy and how to correct models in cases where they contain errors is becoming crucial to ensure the quality of the structural models deposited in the public database, the PDB. Here, a new protocol is presented for evaluating a protein model built from a cryo-EM map and applying local structure refinement in the case where the model has potential errors. Firstly, model evaluation is performed using a deep-learning-based model-local map assessment score, DAQ, that has recently been developed. The subsequent local refinement is performed by a modified AlphaFold2 procedure, in which a trimmed template model and a trimmed multiple sequence alignment are provided as input to control which structure regions to refine while leaving other more confident regions of the model intact. A benchmark study showed that this protocol, DAQ-refine, consistently improves low-quality regions of the initial models. Among 18 refined models generated for an initial structure, DAQ shows a high correlation with model quality and can identify the best accurate model for most of the tested cases. The improvements obtained by DAQ-refine were on average larger than other existing methods.

Keywords

References

  1. Nat Methods. 2022 Nov;19(11):1376-1382 [PMID: 36266465]
  2. Mol Cell. 2020 Oct 15;80(2):237-245.e4 [PMID: 33007200]
  3. Proteins. 2022 Nov;90(11):1873-1885 [PMID: 35510704]
  4. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  5. Cell Res. 2019 Dec;29(12):1027-1034 [PMID: 31729466]
  6. Commun Biol. 2022 Apr 5;5(1):316 [PMID: 35383281]
  7. Nat Comput Sci. 2022 Apr;2(4):265-275 [PMID: 35844960]
  8. Mol Cell. 2021 Jun 3;81(11):2496 [PMID: 34087182]
  9. Nat Methods. 2022 Sep;19(9):1116-1125 [PMID: 35953671]
  10. Elife. 2016 Jul 07;5: [PMID: 27383269]
  11. PLoS One. 2013;8(4):e59004 [PMID: 23565140]
  12. Nature. 2016 Aug 18;536(7616):354-358 [PMID: 27509854]
  13. J Struct Biol. 2017 Jul;199(1):12-26 [PMID: 28552721]
  14. Nature. 2020 Nov;587(7832):152-156 [PMID: 33087931]
  15. Bioinformatics. 2019 Aug 15;35(16):2856-2858 [PMID: 30615063]
  16. Curr Opin Struct Biol. 2018 Oct;52:58-63 [PMID: 30219656]
  17. Acta Crystallogr D Struct Biol. 2022 Feb 1;78(Pt 2):152-161 [PMID: 35102881]
  18. Science. 2020 Oct 30;370(6516): [PMID: 32972993]
  19. Proteins. 2007;69 Suppl 8:38-56 [PMID: 17894352]
  20. Nat Commun. 2021 May 28;12(1):3239 [PMID: 34050165]
  21. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  22. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  23. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  24. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  25. Proteins. 2021 Dec;89(12):1607-1617 [PMID: 34533838]
  26. Nat Methods. 2015 Oct;12(10):943-6 [PMID: 26280328]
  27. Nat Methods. 2020 Mar;17(3):328-334 [PMID: 32042190]
  28. Nature. 2020 Nov;587(7832):157-161 [PMID: 33087927]
  29. Proteins. 2021 Dec;89(12):1711-1721 [PMID: 34599769]
  30. Methods. 2016 May 1;100:50-60 [PMID: 26804562]
  31. Elife. 2022 Mar 03;11: [PMID: 35238773]
  32. Protein Sci. 2014 Jan;23(1):47-55 [PMID: 24265211]
  33. Protein Sci. 2020 Jan;29(1):315-329 [PMID: 31724275]
  34. Science. 2014 Mar 28;343(6178):1443-4 [PMID: 24675944]
  35. Nat Methods. 2022 Jan;19(1):15-20 [PMID: 35017725]
  36. Elife. 2020 May 29;9: [PMID: 32469312]

Grants

  1. R01 GM123055/NIGMS NIH HHS
  2. R01 GM133840/NIGMS NIH HHS

MeSH Term

Cryoelectron Microscopy
Models, Molecular
Proteins
Protein Conformation

Chemicals

DAQ
Proteins

Word Cloud

Created with Highcharts 10.0.0modelmodelsproteinstructurerefinementDAQcryo-EMscoreAlphaFold2regionsmicroscopymapscaseserrorsqualityprotocolmaplocalperformedusingtrimmedDAQ-refineinitialmethodsdeterminedcryogenicelectrondensityestablishingevaluateaccuracycorrectcontainbecomingcrucialensurestructuraldepositedpublicdatabasePDBnewpresentedevaluatingbuiltapplyingcasepotentialFirstlyevaluationdeep-learning-basedmodel-localassessmentrecentlydevelopedsubsequentmodifiedproceduretemplatemultiplesequencealignmentprovidedinputcontrolrefineleavingconfidentintactbenchmarkstudyshowedconsistentlyimproveslow-qualityAmong18refinedgeneratedshowshighcorrelationcanidentifybestaccuratetestedimprovementsobtainedaveragelargerexistingProteincomputationalcryo-electronvalidatation

Similar Articles

Cited By