Targeting Multidrug-Recalcitrant Pseudomonas aeruginosa Biofilms: Combined-Enzyme Treatment Enhances Antibiotic Efficacy.

Yixin Zhang, Wei Wei, Huamei Wen, Zhongle Cheng, Zhongwen Mi, Jing Zhang, Xiaolong Liu, Xinjiong Fan
Author Information
  1. Yixin Zhang: School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
  2. Wei Wei: The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
  3. Huamei Wen: School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
  4. Zhongle Cheng: The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
  5. Zhongwen Mi: School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
  6. Jing Zhang: Stomatological Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China. ORCID
  7. Xiaolong Liu: University of Science and Technology of China, Hefei, Anhui, China.
  8. Xinjiong Fan: School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China. ORCID

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms during infection, resulting in recalcitrance to antibiotic treatment. Biofilm inhibition is a promising research direction for the treatment of biofilm-associated infections. Here, a combined-enzyme biofilm-targeted strategy was put forward for the first time to simultaneously prevent biofilm formation and break down preformed biofilms. The -acylhomoserine lactonase AidH was used as a quorum-sensing inhibitor and was modified to enhance the inhibitory effect on biofilms by rational design. Mutant AidH exerted maximum activity at the human body temperature and pH and could reduce the expression of virulence factors as well as biofilm-related genes of P. aeruginosa. Subsequently, the P. aeruginosa self-produced glycosyl hydrolase PslG joined with AidH to disrupt biofilms. Interestingly, under the combined-enzyme intervention for P. aeruginosa wild-type strain PAO1 and clinical strains, no biofilm was observed on the bottom of NEST glass-bottom cell culture dishes. The combination strategy also helped multidrug-resistant clinical strains change from resistant to intermediate or sensitive to many antibiotics commonly used in clinical practice. These results demonstrated that the combined-enzyme approach for inhibiting biofilms is a potential clinical treatment for P. aeruginosa infection.

Keywords

References

  1. Microbes Infect. 2022 Jun;24(4):104950 [PMID: 35139390]
  2. Appl Environ Microbiol. 2010 Aug;76(15):4933-42 [PMID: 20525860]
  3. J Biol Chem. 2015 Nov 20;290(47):28374-28387 [PMID: 26424791]
  4. Appl Microbiol Biotechnol. 2020 Mar;104(5):1871-1881 [PMID: 31927762]
  5. Nat Commun. 2022 Mar 21;13(1):1493 [PMID: 35315431]
  6. ACS Chem Biol. 2016 Nov 18;11(11):3122-3131 [PMID: 27623343]
  7. Antibiotics (Basel). 2020 Dec 23;10(1): [PMID: 33374551]
  8. Mol Gen Genet. 1994 Feb;242(4):421-30 [PMID: 8121397]
  9. Front Microbiol. 2020 Apr 24;11:762 [PMID: 32390993]
  10. Environ Microbiol. 2012 Aug;14(8):1995-2005 [PMID: 22513190]
  11. J Bacteriol. 1980 Jun;142(3):836-42 [PMID: 6769912]
  12. J Med Chem. 2022 Jul 14;65(13):9050-9062 [PMID: 35759644]
  13. Front Microbiol. 2017 Oct 10;8:1950 [PMID: 29067011]
  14. EMBO Rep. 2007 Jul;8(7):616-21 [PMID: 17603533]
  15. Front Chem. 2020 Feb 05;8:54 [PMID: 32117880]
  16. Antibiotics (Basel). 2020 Aug 05;9(8): [PMID: 32764492]
  17. Antimicrob Agents Chemother. 1993 Sep;37(9):1749-55 [PMID: 8239580]
  18. Annu Rev Microbiol. 2001;55:165-99 [PMID: 11544353]
  19. Sci Rep. 2018 Apr 16;8(1):6013 [PMID: 29662232]
  20. Biochem Biophys Rep. 2021 May 26;26:101028 [PMID: 34095554]
  21. Microbiology (Reading). 2000 Oct;146 ( Pt 10):2395-2407 [PMID: 11021916]
  22. Diagn Microbiol Infect Dis. 2021 Dec;101(4):115512 [PMID: 34419741]
  23. Front Microbiol. 2019 Apr 17;10:823 [PMID: 31057524]
  24. Pharmaceuticals (Basel). 2021 Dec 05;14(12): [PMID: 34959667]
  25. Nat Rev Microbiol. 2019 Jun;17(6):371-382 [PMID: 30944413]
  26. Acta Crystallogr D Biol Crystallogr. 2013 Jan;69(Pt 1):82-91 [PMID: 23275166]
  27. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1568-73 [PMID: 24474783]
  28. Anal Biochem. 2006 Sep 15;356(2):297-9 [PMID: 16857158]
  29. Biotechnol Adv. 2019 Jan - Feb;37(1):177-192 [PMID: 30500353]
  30. J Bacteriol. 1990 Feb;172(2):884-900 [PMID: 2153661]
  31. BMC Microbiol. 2013 Jul 13;13:159 [PMID: 23848942]
  32. Appl Microbiol Biotechnol. 2015 Jun;99(11):4735-42 [PMID: 25547834]
  33. J Glob Antimicrob Resist. 2021 Sep;26:101-107 [PMID: 34023532]
  34. Front Microbiol. 2020 Aug 27;11:2057 [PMID: 32973737]
  35. FEMS Immunol Med Microbiol. 2012 Jul;65(2):127-45 [PMID: 22469292]
  36. Microb Pathog. 2018 Nov;124:356-364 [PMID: 30118807]
  37. ACS Chem Biol. 2018 Sep 21;13(9):2655-2662 [PMID: 30114353]
  38. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7124-7129 [PMID: 28634301]
  39. Int J Mol Sci. 2021 Mar 18;22(6): [PMID: 33803907]
  40. J Clin Microbiol. 2021 Nov 18;59(12):e0021321 [PMID: 34550809]
  41. Antimicrob Agents Chemother. 2019 May 24;63(6): [PMID: 30988141]
  42. Expert Rev Anti Infect Ther. 2020 Dec;18(12):1221-1233 [PMID: 32749905]
  43. Nat Rev Microbiol. 2010 Sep;8(9):623-33 [PMID: 20676145]
  44. Front Microbiol. 2019 May 03;10:913 [PMID: 31130925]
  45. Mar Drugs. 2018 Oct 08;16(10): [PMID: 30297643]
  46. Front Pharmacol. 2020 Oct 02;11:572375 [PMID: 33123010]
  47. Cell. 2022 May 26;185(11):1860-1874.e12 [PMID: 35568033]
  48. PLoS One. 2013 Sep 23;8(9):e75272 [PMID: 24086491]
  49. Antibiotics (Basel). 2021 Jan 04;10(1): [PMID: 33406652]
  50. J Biol Chem. 2010 Dec 24;285(52):40911-20 [PMID: 20980257]
  51. Proc Natl Acad Sci U S A. 2021 Mar 23;118(12): [PMID: 33723058]
  52. Microbiology (Reading). 2010 Jul;156(Pt 7):2239-2252 [PMID: 20360178]
  53. Microbiol Mol Biol Rev. 2014 Sep;78(3):510-43 [PMID: 25184564]
  54. Cell Res. 2015 Dec;25(12):1352-67 [PMID: 26611635]
  55. Clin Microbiol Rev. 2019 Aug 28;32(4): [PMID: 31462403]
  56. Mol Biol Rep. 2020 Jun;47(6):4131-4143 [PMID: 32474845]
  57. J Biol Chem. 2020 Sep 11;295(37):12993-13007 [PMID: 32690609]
  58. Sci Rep. 2018 Jul 16;8(1):10738 [PMID: 30013112]

MeSH Term

Humans
Anti-Bacterial Agents
Pseudomonas aeruginosa
Biofilms
Quorum Sensing
Virulence Factors

Chemicals

Anti-Bacterial Agents
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0aeruginosabiofilmsPclinicalPseudomonastreatmentcombined-enzymebiofilmAidHinfectionstrategylactonaseusedrationaldesignstrainsopportunisticpathogenformsresultingrecalcitranceantibioticBiofilminhibitionpromisingresearchdirectionbiofilm-associatedinfectionsbiofilm-targetedputforwardfirsttimesimultaneouslypreventformationbreakpreformed-acylhomoserinequorum-sensinginhibitormodifiedenhanceinhibitoryeffectMutantexertedmaximumactivityhumanbodytemperaturepHreduceexpressionvirulencefactorswellbiofilm-relatedgenesSubsequentlyself-producedglycosylhydrolasePslGjoineddisruptInterestinglyinterventionwild-typestrainPAO1observedbottomNESTglass-bottomcellculturedishescombinationalsohelpedmultidrug-resistantchangeresistantintermediatesensitivemanyantibioticscommonlypracticeresultsdemonstratedapproachinhibitingpotentialTargetingMultidrug-RecalcitrantBiofilms:Combined-EnzymeTreatmentEnhancesAntibioticEfficacyN-acylhomoserinequorumsensing

Similar Articles

Cited By