Insights into the Effects and Mechanism of Andrographolide-Mediated Recovery of Susceptibility of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics.

Qiang Ma, Guilai Wang, Na Li, Xin Wang, Xinyun Kang, Yanni Mao, Guiqin Wang
Author Information
  1. Qiang Ma: Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.
  2. Guilai Wang: Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia, China.
  3. Na Li: Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.
  4. Xin Wang: Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.
  5. Xinyun Kang: Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.
  6. Yanni Mao: Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.
  7. Guiqin Wang: Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China.

Abstract

The frequent resistance associated with β-lactam antibiotics and the high frequency of mutations in β-lactamases constitute a major clinical challenge that can no longer be ignored. Andrographolide (AP), a natural active compound, has been shown to restore susceptibility to β-lactam antibiotics. Fluorescence quenching and molecular simulation showed that AP quenched the intrinsic fluorescence of β-lactamase BlaZ and stably bound to the residues in the catalytic cavity of BlaZ. Of note, AP was found to reduce the stability of the cell wall (CW) in methicillin-resistant Staphylococcus aureus (MRSA), and in combination with penicillin G (PEN), it significantly induced CW roughness and dispersion and even caused its disintegration, while the same concentration of PEN did not. In addition, transcriptome sequencing revealed that AP induced a significant stress response and increased peptidoglycan (PG) synthesis but disrupted its cross-linking, and it repressed the expression of critical genes such as , , and . We also validated these findings by quantitative reverse transcription-PCR (qRT-PCR). Association analysis using the GEO database showed that the alterations caused by AP were similar to those caused by mutations in the gene. In summary, AP was able to restore the susceptibility of MRSA to β-lactam antibiotics, mainly by inhibiting the β-lactamase BlaZ, by downregulating the expression of critical resistance genes such as and , and by disrupting CW homeostasis. In addition, restoration of susceptibility to antibiotics could be achieved by inhibiting the global regulator SarA, providing an effective solution to alleviate the problem of bacterial resistance. Increasingly, alternatives to antibiotics are being used to mitigate the rapid onset and development of bacterial resistance, and the combination of natural compounds with traditional antibiotics has become an effective therapeutic strategy. Therefore, we attempted to discover more mechanisms to restore susceptibility and effective dosing strategies. Andrographolide (AP), as a natural active ingredient, can mediate recovery of susceptibility of MRSA to β-lactam antibiotics. AP bound stably to the β-lactamase BlaZ and impaired its hydrolytic activity. Notably, AP was able to downregulate the expression of critical resistance genes such as , , and . Meanwhile, it disrupted the CW cross-linking and homeostasis, while the same concentration of penicillin could not. The multiple inhibitory effect of AP resensitizes intrinsically resistant bacteria to β-lactam antibiotics, effectively prolonging the use cycle of these antibiotics and providing an effective solution to reduce the dosage of antibiotics and providing a theoretical reference for the prevention and control of MRSA.

Keywords

References

  1. Biomolecules. 2022 May 25;12(6): [PMID: 35740872]
  2. Mol Microbiol. 2003 Aug;49(3):807-21 [PMID: 12864861]
  3. Antimicrob Agents Chemother. 2006 Oct;50(10):3424-34 [PMID: 17005825]
  4. Curr Pharm Des. 2016;22(23):3585-600 [PMID: 27108593]
  5. Biomed Khim. 2017 Nov;63(6):499-507 [PMID: 29251610]
  6. BMC Microbiol. 2011 Jan 20;11:16 [PMID: 21251258]
  7. Int J Biol Macromol. 2020 Mar 1;146:687-691 [PMID: 31846662]
  8. Curr Res Transl Med. 2019 Nov;67(4):115-122 [PMID: 31155436]
  9. Antimicrob Resist Infect Control. 2022 Jun 23;11(1):90 [PMID: 35739564]
  10. Nat Commun. 2020 May 4;11(1):2200 [PMID: 32366839]
  11. Curr Pharm Des. 2019;25(31):3339-3349 [PMID: 31480998]
  12. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  13. Australas Med J. 2013 Dec 31;6(12):686-93 [PMID: 24391679]
  14. Acta Pharm Sin B. 2019 Nov;9(6):1174-1182 [PMID: 31867163]
  15. ACS Chem Biol. 2011 Jan 21;6(1):106-16 [PMID: 20961110]
  16. J Bacteriol. 2007 Jan;189(2):531-9 [PMID: 17085555]
  17. Microbiology (Reading). 2006 Oct;152(Pt 10):3075-3090 [PMID: 17005987]
  18. J Am Chem Soc. 2017 Jul 26;139(29):9791-9794 [PMID: 28691491]
  19. Biochim Biophys Acta. 2004 Sep 24;1674(2):205-14 [PMID: 15374625]
  20. Luminescence. 2020 Aug;35(5):728-737 [PMID: 31994341]
  21. Biochem Soc Trans. 2022 Feb 28;50(1):241-252 [PMID: 35076690]
  22. Eur Rev Med Pharmacol Sci. 2021 Mar;25(5):2367-2382 [PMID: 33755974]
  23. PLoS One. 2012;7(8):e43998 [PMID: 22952845]
  24. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  25. Microbiologyopen. 2020 Aug;9(8):e1057 [PMID: 32419377]
  26. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27872073]
  27. Nat Commun. 2020 Nov 27;11(1):6038 [PMID: 33247131]
  28. mSphere. 2019 Oct 23;4(5): [PMID: 31645429]
  29. J Chem Inf Model. 2013 Aug 26;53(8):1893-904 [PMID: 23379370]
  30. BMC Res Notes. 2012 Jul 23;5:367 [PMID: 22824207]
  31. Microbiol Mol Biol Rev. 1998 Dec;62(4):1371-414 [PMID: 9841676]
  32. Eur J Pharm Sci. 2021 Mar 1;158:105686 [PMID: 33359132]
  33. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Feb 5;246:118977 [PMID: 33017787]
  34. Cell Death Discov. 2018 Feb 20;4:28 [PMID: 29531825]
  35. Nat Struct Biol. 2001 Mar;8(3):238-42 [PMID: 11224569]
  36. Food Chem. 2021 Jun 1;346:128933 [PMID: 33418408]
  37. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  38. J Chem Inf Model. 2018 Aug 27;58(8):1473-1482 [PMID: 29975531]
  39. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  40. J Mol Biol. 2019 Aug 23;431(18):3472-3500 [PMID: 30959050]
  41. J Infect Dis. 2016 Nov 1;214(9):1421-1429 [PMID: 27543672]
  42. Biochemistry. 2022 Mar 1;61(5):398-407 [PMID: 35142509]
  43. J Chem Inf Model. 2014 Jul 28;54(7):1951-62 [PMID: 24850022]
  44. Eur J Med Chem. 2021 Nov 15;224:113710 [PMID: 34315039]
  45. Eur J Med Chem. 2020 Dec 15;208:112829 [PMID: 33002736]
  46. Biochem Mol Biol Educ. 2016 Sep 10;44(5):433-7 [PMID: 27241834]
  47. Front Microbiol. 2020 Aug 04;11:1785 [PMID: 32849403]
  48. Adv Sci (Weinh). 2021 May 03;8(13):2100681 [PMID: 34258168]
  49. J Int Med Res. 2008 Jan-Feb;36(1):178-86 [PMID: 18304418]

MeSH Term

Methicillin-Resistant Staphylococcus aureus
Bacterial Proteins
Microbial Sensitivity Tests
Anti-Bacterial Agents
beta-Lactamases
Penicillins
Monobactams

Chemicals

andrographolide
Bacterial Proteins
Anti-Bacterial Agents
beta-Lactamases
Penicillins
Monobactams

Word Cloud

Created with Highcharts 10.0.0antibioticsAPβ-lactamresistancesusceptibilityβ-lactamaseBlaZCWMRSAeffectivenaturalrestoreStaphylococcusaureuscausedexpressioncriticalgenesprovidingmutationscanAndrographolideactiveshowedstablyboundreducemethicillin-resistantcombinationpenicillinPENinducedconcentrationadditiondisruptedcross-linkingableinhibitinghomeostasissolutionbacterialfrequentassociatedhighfrequencyβ-lactamasesconstitutemajorclinicalchallengelongerignoredcompoundshownFluorescencequenchingmolecularsimulationquenchedintrinsicfluorescenceresiduescatalyticcavitynotefoundstabilitycellwallGsignificantlyroughnessdispersionevendisintegrationtranscriptomesequencingrevealedsignificantstressresponseincreasedpeptidoglycanPGsynthesisrepressedalsovalidatedfindingsquantitativereversetranscription-PCRqRT-PCRAssociationanalysisusingGEOdatabasealterationssimilargenesummarymainlydownregulatingdisruptingrestorationachievedglobalregulatorSarAalleviateproblemIncreasinglyalternativesusedmitigaterapidonsetdevelopmentcompoundstraditionalbecometherapeuticstrategyThereforeattempteddiscovermechanismsdosingstrategiesingredientmediaterecoveryimpairedhydrolyticactivityNotablydownregulateMeanwhilemultipleinhibitoryeffectresensitizesintrinsicallyresistantbacteriaeffectivelyprolongingusecycledosagetheoreticalreferencepreventioncontrolInsightsEffectsMechanismAndrographolide-MediatedRecoverySusceptibilityMethicillin-Resistantβ-LactamAntibioticsandrographolideinhibitor

Similar Articles

Cited By