Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application.

Qiang Ding, Chao Ye
Author Information
  1. Qiang Ding: School of Life Sciences, Anhui University, Hefei, China. ORCID
  2. Chao Ye: School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.

Abstract

In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.

References

  1. Metab Eng. 2018 Mar;46:28-34 [PMID: 29477857]
  2. Trends Biotechnol. 2008 Feb;26(2):100-8 [PMID: 18191255]
  3. Appl Microbiol Biotechnol. 2014 Jun;98(12):5449-60 [PMID: 24604500]
  4. Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):830-41 [PMID: 25902192]
  5. Biotechnol Bioeng. 2013 Aug;110(8):2105-13 [PMID: 23436475]
  6. Biotechnol Prog. 2016 Jan-Feb;32(1):14-20 [PMID: 26439318]
  7. Angew Chem Int Ed Engl. 2022 Jul 18;61(29):e202203909 [PMID: 35562330]
  8. Nat Biotechnol. 2013 Apr;31(4):335-41 [PMID: 23417095]
  9. Biotechnol Lett. 2011 Dec;33(12):2463-7 [PMID: 21826400]
  10. Appl Environ Microbiol. 2008 May;74(9):2766-77 [PMID: 18344340]
  11. Metab Eng Commun. 2017 Jan 17;4:12-21 [PMID: 29142828]
  12. Biotechnol Bioeng. 2017 Mar;114(3):656-664 [PMID: 27668703]
  13. Appl Microbiol Biotechnol. 2014 Apr;98(8):3517-27 [PMID: 24413918]
  14. Appl Environ Microbiol. 2011 Jan;77(2):427-34 [PMID: 21097588]
  15. Metab Eng. 2018 May;47:496-504 [PMID: 29753840]
  16. Appl Microbiol Biotechnol. 2013 Oct;97(20):8903-12 [PMID: 23925533]
  17. J Ind Microbiol Biotechnol. 2012 Jul;39(7):1073-80 [PMID: 22395899]
  18. Microb Biotechnol. 2019 Jan;12(1):98-124 [PMID: 29926529]
  19. Biotechnol Bioeng. 1991 May;37(11):1108-16 [PMID: 18597343]
  20. Metab Eng. 2019 May;53:24-34 [PMID: 30605774]
  21. Bioresour Technol. 2017 Dec;245(Pt B):1362-1368 [PMID: 28522199]
  22. Biotechnol Adv. 2017 Jan - Feb;35(1):20-30 [PMID: 27867004]
  23. Essays Biochem. 2021 Jul 26;65(2):225-246 [PMID: 33956149]
  24. Biotechnol Biofuels. 2021 Feb 23;14(1):48 [PMID: 33622386]
  25. Curr Opin Biotechnol. 2020 Apr;62:1-6 [PMID: 31505401]
  26. Biotechnol Bioeng. 2018 Jun;115(6):1571-1580 [PMID: 29476618]
  27. ACS Synth Biol. 2018 Sep 21;7(9):2139-2147 [PMID: 30092627]
  28. Bioresour Technol. 2017 Jan;223:166-174 [PMID: 27792926]
  29. Appl Microbiol Biotechnol. 2020 May;104(10):4259-4272 [PMID: 32215709]
  30. Nat Chem Biol. 2010 Dec;6(12):875-7 [PMID: 21079595]
  31. J Biosci Bioeng. 2012 Sep;114(3):281-5 [PMID: 22575438]
  32. Nat Prod Rep. 2021 Aug 1;38(8):1518-1546 [PMID: 33410446]
  33. Biotechnol Adv. 2017 Dec;35(8):1040-1048 [PMID: 28939498]
  34. Metab Eng. 2019 Sep;55:152-160 [PMID: 31306776]
  35. Curr Opin Biotechnol. 2020 Dec;66:105-112 [PMID: 32738762]
  36. FEMS Microbiol Lett. 2015 May;362(9): [PMID: 25862576]
  37. J Food Sci. 2012 Apr;77(4):M188-93 [PMID: 22352902]
  38. Biotechnol Biofuels. 2020 Jul 23;13:132 [PMID: 32760446]
  39. Appl Microbiol Biotechnol. 2017 May;101(10):4041-4052 [PMID: 28229207]
  40. ACS Synth Biol. 2020 Jun 19;9(6):1418-1425 [PMID: 32379964]
  41. Trends Biotechnol. 2016 May;34(5):408-419 [PMID: 26875975]
  42. ACS Synth Biol. 2017 Mar 17;6(3):545-554 [PMID: 27930885]
  43. Biotechnol Adv. 2021 Mar-Apr;47:107706 [PMID: 33548455]
  44. J Biosci Bioeng. 2014 Feb;117(2):147-152 [PMID: 23932397]
  45. World J Microbiol Biotechnol. 2017 Dec 06;34(1):6 [PMID: 29214355]
  46. Bioresour Technol. 2019 Jun;281:18-25 [PMID: 30784998]
  47. Biotechnol Bioeng. 2008 Apr 1;99(5):1140-53 [PMID: 17972330]
  48. Crit Rev Biotechnol. 2021 Mar;41(2):216-228 [PMID: 33153315]
  49. Angew Chem Int Ed Engl. 2019 Jan 14;58(3):796-800 [PMID: 30474178]
  50. Nat Chem Biol. 2017 Aug;13(8):823-832 [PMID: 28853733]
  51. Biotechnol Biofuels. 2018 Oct 4;11:272 [PMID: 30305845]
  52. Appl Microbiol Biotechnol. 2020 Nov;104(21):9109-9124 [PMID: 32974742]
  53. Appl Microbiol Biotechnol. 1997 Aug;48(2):248-55 [PMID: 9299784]
  54. Int J Pharm. 2017 Jan 30;517(1-2):269-278 [PMID: 27956189]
  55. Cell. 2018 Sep 6;174(6):1549-1558.e14 [PMID: 30100189]
  56. Biotechnol Biofuels. 2016 Jul 02;9:135 [PMID: 27375775]
  57. Appl Microbiol Biotechnol. 2018 May;102(9):3831-3848 [PMID: 29523935]
  58. Appl Biochem Biotechnol. 2018 Apr;184(4):1308-1318 [PMID: 29019075]
  59. Essays Biochem. 2016 Nov 30;60(4):303-313 [PMID: 27903818]
  60. Biotechnol Lett. 2014 Mar;36(3):553-60 [PMID: 24129953]
  61. Bioresour Bioprocess. 2021 Nov 30;8(1):118 [PMID: 38650289]
  62. Biotechnol Bioeng. 2018 Mar;115(3):661-672 [PMID: 29105733]
  63. Front Bioeng Biotechnol. 2021 Sep 29;9:765685 [PMID: 34660563]
  64. Bioresour Technol. 2017 Jan;224:581-589 [PMID: 27839861]
  65. Appl Microbiol Biotechnol. 2018 Oct;102(20):8739-8751 [PMID: 30109399]
  66. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19415-19420 [PMID: 31467169]
  67. Biotechnol Adv. 2021 Mar-Apr;47:107695 [PMID: 33465474]
  68. J Ind Microbiol Biotechnol. 2015 Apr;42(4):487-506 [PMID: 25557737]
  69. Crit Rev Biotechnol. 2019 Jun;39(4):571-586 [PMID: 30931643]
  70. Nucleic Acids Res. 2022 Jun 24;50(11):6587-6600 [PMID: 35670665]
  71. Biotechnol Bioeng. 2021 Jul;118(7):2597-2608 [PMID: 33829485]
  72. World J Microbiol Biotechnol. 2013 Jan;29(1):33-41 [PMID: 22914898]
  73. Biotechnol Adv. 2021 May-Jun;48:107710 [PMID: 33582180]
  74. Crit Rev Biotechnol. 2016;36(1):99-107 [PMID: 25025277]
  75. Nat Biotechnol. 2017 Mar;35(3):273-279 [PMID: 28191902]
  76. Appl Environ Microbiol. 2017 Mar 17;83(7): [PMID: 28115377]
  77. Bioresour Technol. 2013 Sep;143:674-7 [PMID: 23831380]
  78. Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5572-5576 [PMID: 30801929]
  79. Metab Eng. 2015 Jul;30:7-15 [PMID: 25908185]
  80. Appl Environ Microbiol. 2013 Oct;79(19):6050-8 [PMID: 23892740]
  81. Appl Microbiol Biotechnol. 2018 Apr;102(7):2997-3006 [PMID: 29473099]
  82. Biotechnol Biofuels. 2016 Mar 17;9:67 [PMID: 26989444]
  83. Front Microbiol. 2016 Jun 21;7:891 [PMID: 27445993]
  84. Biotechnol Bioeng. 2021 Nov;118(11):4347-4359 [PMID: 34302701]
  85. Curr Opin Biotechnol. 2016 Dec;42:54-66 [PMID: 26990278]
  86. BMC Biotechnol. 2017 Feb 23;17(1):20 [PMID: 28231788]
  87. Metab Eng. 2020 Sep;61:47-57 [PMID: 32416271]
  88. Chem Soc Rev. 2020 Jul 21;49(14):4615-4636 [PMID: 32567619]
  89. Appl Microbiol Biotechnol. 2014 Feb;98(4):1539-46 [PMID: 24232832]
  90. Biotechnol Biofuels. 2017 Oct 23;10:242 [PMID: 29075326]
  91. Mol Syst Biol. 2018 Nov 27;14(11):e8605 [PMID: 30482789]
  92. Essays Biochem. 2021 Jul 26;65(2):277-291 [PMID: 34061167]
  93. Essays Biochem. 2021 Jul 26;65(2):293-307 [PMID: 33956085]
  94. Biotechnol Bioeng. 2012 Feb;109(2):462-71 [PMID: 21887774]
  95. J Biotechnol. 2017 Jul 10;253:1-9 [PMID: 28506930]
  96. Eur J Nutr. 2017 Mar;56(2):775-784 [PMID: 26658899]
  97. Nature. 2018 Mar 29;555(7698):683-687 [PMID: 29562237]
  98. Biotechnol Bioeng. 2019 Oct;116(10):2662-2673 [PMID: 31180134]
  99. Appl Microbiol Biotechnol. 2020 Jan;104(1):51-65 [PMID: 31773206]
  100. Crit Rev Biotechnol. 2019 May;39(3):408-421 [PMID: 30741018]
  101. Essays Biochem. 2021 Jul 26;65(2):393-403 [PMID: 33885142]
  102. Appl Microbiol Biotechnol. 2021 Apr;105(8):3101-3113 [PMID: 33818672]
  103. Curr Opin Biotechnol. 2015 Feb;31:50-6 [PMID: 25151059]
  104. Appl Microbiol Biotechnol. 2019 Oct;103(19):8105-8114 [PMID: 31392377]
  105. Nat Chem Biol. 2019 Jun;15(6):589-597 [PMID: 31086330]
  106. J Biosci Bioeng. 2011 Jan;111(1):26-30 [PMID: 20829106]
  107. Metab Eng. 2013 Sep;19:10-6 [PMID: 23707987]
  108. Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11025-E11032 [PMID: 30397111]
  109. J Biotechnol. 2013 Mar 10;164(1):34-40 [PMID: 23246984]
  110. Biotechnol Bioeng. 2018 Feb;115(2):473-482 [PMID: 29044478]
  111. Appl Microbiol Biotechnol. 2020 Oct;104(20):8691-8703 [PMID: 32902681]
  112. Trends Biotechnol. 2020 Jul;38(7):779-796 [PMID: 32029285]
  113. Bioresour Technol. 2018 Dec;269:393-399 [PMID: 30205264]
  114. Biotechnol Bioeng. 2009 Dec 1;104(5):965-72 [PMID: 19572314]
  115. Biotechnol Adv. 2020 Nov 15;44:107630 [PMID: 32919011]
  116. Microb Biotechnol. 2023 Apr;16(4):709-725 [PMID: 36604311]
  117. ACS Synth Biol. 2021 Apr 16;10(4):707-715 [PMID: 33723997]

MeSH Term

Fermentation
Malates
Biosynthetic Pathways
Biotechnology
Metabolic Engineering
Synthetic Biology

Chemicals

malic acid
Malates

Word Cloud

Created with Highcharts 10.0.0L-malatemicrobialbiosynthesisindustrialapplicationchemicalmethodsapproachesunderstandingcellphysiologyimprovestrategiessyntheticbiologytoolssynthesissubstratepathwayfermentationregulationadditionimportantintermediateTCAcyclealsowidelyusedbeverageindustriesDueresultinghighdemandnumerousstudiesinvestigatedsynthesizepetrochemicalresourceshamperedcomplexdownstreamprocessingenvironmentalpollutionAccordinglyurgentneeddevelopenvironmentally-friendlyeconomicalrapidprogressDNAmanipulationmetabolismcanapplyingintelligentbiochemicaladvancedpapermainlyfocusedbiotechnologicalenhancingencompassingchassisutilizationreviewemphasizesnovelmetabolicengineeringcombineddeepfutureRecentadvancesproducingfoodadditiveL-malate:Chassis

Similar Articles

Cited By