Moderation of Services' EKC through Transportation Competitiveness: PQR Model in Global Prospective.

Muhammad Shahzad Sardar, Nabila Asghar, Mubbasher Munir, Reda Alhajj, Hafeez Ur Rehman
Author Information
  1. Muhammad Shahzad Sardar: Department of Economics and Statistics, University of Management and Technology, Lahore 54770, Pakistan.
  2. Nabila Asghar: Department of Economics, Division of Management and Administrative Science, University of Education Lahore, Lahore 54770, Pakistan.
  3. Mubbasher Munir: Department of Economics and Statistics, University of Management and Technology, Lahore 54770, Pakistan. ORCID
  4. Reda Alhajj: School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey.
  5. Hafeez Ur Rehman: Department of Economics and Statistics, University of Management and Technology, Lahore 54770, Pakistan.

Abstract

The continuously increasing GHG emissions have created environmental pollution and several challenges to ecosystems and biodiversity. The challenges of climate change are multipronged, resulting in melting glaciers, flash floods, and severe heat waves. In this regard, the adaptive and mitigation strategies to manage the consequences of climate change are highly important. The transport sector creates a quarter of carbon emissions, and this share is continuously increasing. Accordingly, this research study uses transport competitiveness to determine carbon emissions of the transport sector for 121 countries covering the time period from 2008 to 2018. The Panel Quantile Regression (PQR) technique is engaged to analyze the study results. The findings highlight that transport competitiveness tends to increase carbon emissions of the transport sector across quantile groups 1 and 3, while it reduces carbon emissions in quantile group 2. The U-shaped services' EKC is validated in quantile groups 2 and 4. The moderation engaged, i.e., transportation competitiveness, changes the turning point of the services' EKC across quantile groups 2 and 4. However, in the high-CO quantile group, the moderation impact of transport competitiveness is strongest as it reduces the sensitivity by flattening the services' EKC. Furthermore, the planned expansion of the population and improved institutional quality tend to mitigate carbon emissions across different quantile groups. The policy relevance/implications that are based on the study results/findings are made part of the research paper.

Keywords

References

  1. Environ Sci Pollut Res Int. 2019 Apr;26(11):10446-10456 [PMID: 30891699]
  2. Environ Sci Pollut Res Int. 2020 Apr;27(11):12717-12724 [PMID: 32008192]
  3. Environ Sci Pollut Res Int. 2019 Aug;26(23):23386-23398 [PMID: 31201699]
  4. Environ Sci Pollut Res Int. 2019 Jan;26(3):2806-2819 [PMID: 30488245]
  5. Environ Sci Pollut Res Int. 2021 Mar;28(11):13581-13594 [PMID: 33185793]
  6. Asia Eur J. 2021 Jul 20;:1-29 [PMID: 34305499]
  7. Environ Sci Pollut Res Int. 2019 Mar;26(8):7926-7937 [PMID: 30684185]
  8. J Environ Sci (China). 2017 Jun;56:102-113 [PMID: 28571844]
  9. Sci Total Environ. 2020 Jun 25;723:138063 [PMID: 32217396]
  10. J Environ Manage. 2021 Nov 1;297:113316 [PMID: 34293673]
  11. Environ Sci Pollut Res Int. 2021 Dec;28(47):67677-67688 [PMID: 34263400]
  12. J Environ Manage. 2020 Jul 1;265:110533 [PMID: 32421559]
  13. Environ Sci Pollut Res Int. 2021 Jan;28(3):3243-3252 [PMID: 32910404]
  14. Environ Sci Pollut Res Int. 2020 Oct;27(30):38169-38180 [PMID: 32617821]
  15. Environ Sci Pollut Res Int. 2018 Mar;25(8):7740-7747 [PMID: 29288303]
  16. Environ Sci Pollut Res Int. 2019 Sep;26(27):27660-27676 [PMID: 31338760]
  17. Sci Total Environ. 2019 Aug 10;677:436-446 [PMID: 31059886]
  18. Sci Total Environ. 2021 Mar 25;762:143093 [PMID: 33158529]
  19. Environ Sci Pollut Res Int. 2020 Mar;27(9):10039-10054 [PMID: 31933073]
  20. J Environ Manage. 2020 Nov 1;273:111134 [PMID: 32758914]
  21. Environ Sci Pollut Res Int. 2021 Jul;28(26):35126-35144 [PMID: 33665700]
  22. Environ Sci Pollut Res Int. 2022 Aug;29(40):60385-60400 [PMID: 35420341]
  23. Environ Sci Pollut Res Int. 2018 May;25(15):15029-15035 [PMID: 29552719]
  24. Environ Sci Pollut Res Int. 2019 Nov;26(33):34468-34478 [PMID: 31642017]
  25. Lancet Glob Health. 2020 Apr;8(4):e472-e475 [PMID: 32199113]
  26. Environ Sci Pollut Res Int. 2022 Feb;29(10):14930-14947 [PMID: 34623587]
  27. J Environ Manage. 2020 Apr 15;260:110163 [PMID: 32090849]
  28. Environ Sci Pollut Res Int. 2021 Mar;28(12):14372-14385 [PMID: 33210250]
  29. Environ Sci Pollut Res Int. 2021 Apr;28(14):18163-18175 [PMID: 33410004]
  30. Environ Sci Pollut Res Int. 2020 Nov;27(31):38951-38973 [PMID: 32638298]

MeSH Term

Carbon Dioxide
Ecosystem
Prospective Studies
Climate Change
Carbon
Economic Development

Chemicals

Carbon Dioxide
Carbon

Word Cloud

Created with Highcharts 10.0.0emissionsquantiletransportcarboncompetitivenessEKCgroupssectorstudyacross2services'continuouslyincreasingchallengesclimatechangeresearchPQRengagedreducesgroup4moderationtransportationpopulationinstitutionalqualityGHGcreatedenvironmentalpollutionseveralecosystemsbiodiversitymultiprongedresultingmeltingglaciersflashfloodssevereheatwavesregardadaptivemitigationstrategiesmanageconsequenceshighlyimportantcreatesquartershareAccordinglyusesdetermine121countriescoveringtimeperiod20082018PanelQuantileRegressiontechniqueanalyzeresultsfindingshighlighttendsincrease13U-shapedvalidatediechangesturningpointHoweverhigh-COimpactstrongestsensitivityflatteningFurthermoreplannedexpansionimprovedtendmitigatedifferentpolicyrelevance/implicationsbasedresults/findingsmadepartpaperModerationServices'TransportationCompetitiveness:ModelGlobalProspectivepenalregressionmodeldensityservices’

Similar Articles

Cited By