Deep Learning in Diverse Intelligent Sensor Based Systems.

Yanming Zhu, Min Wang, Xuefei Yin, Jue Zhang, Erik Meijering, Jiankun Hu
Author Information
  1. Yanming Zhu: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia. ORCID
  2. Min Wang: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia. ORCID
  3. Xuefei Yin: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia. ORCID
  4. Jue Zhang: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia.
  5. Erik Meijering: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
  6. Jiankun Hu: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia. ORCID

Abstract

Deep learning has become a predominant method for solving data analysis problems in virtually all fields of science and engineering. The increasing complexity and the large volume of data collected by diverse sensor systems have spurred the development of deep learning methods and have fundamentally transformed the way the data are acquired, processed, analyzed, and interpreted. With the rapid development of deep learning technology and its ever-increasing range of successful applications across diverse sensor systems, there is an urgent need to provide a comprehensive investigation of deep learning in this domain from a holistic view. This survey paper aims to contribute to this by systematically investigating deep learning models/methods and their applications across diverse sensor systems. It also provides a comprehensive summary of deep learning implementation tips and links to tutorials, open-source codes, and pretrained models, which can serve as an excellent self-contained reference for deep learning practitioners and those seeking to innovate deep learning in this space. In addition, this paper provides insights into research topics in diverse sensor systems where deep learning has not yet been well-developed, and highlights challenges and future opportunities. This survey serves as a catalyst to accelerate the application and transformation of deep learning in diverse sensor systems.

Keywords

References

  1. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11 [PMID: 32613207]
  2. IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8358-8371 [PMID: 37018679]
  3. IEEE Trans Neural Netw. 1994;5(2):157-66 [PMID: 18267787]
  4. PLoS One. 2021 May 13;16(5):e0251415 [PMID: 33984021]
  5. Entropy (Basel). 2019 Feb 12;21(2): [PMID: 33266884]
  6. Biophys Rev (Melville). 2023 Feb 07;4(1):011306 [PMID: 38505815]
  7. IEEE/ACM Trans Audio Speech Lang Process. 2014 Dec;22(12):1849-1858 [PMID: 25599083]
  8. BMC Genomics. 2017 Nov 17;18(Suppl 9):845 [PMID: 29219072]
  9. IEEE J Biomed Health Inform. 2017 Jan;21(1):56-64 [PMID: 28026792]
  10. Nat Genet. 2019 Jan;51(1):12-18 [PMID: 30478442]
  11. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  12. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  13. IEEE/ACM Trans Comput Biol Bioinform. 2019 Mar-Apr;16(2):596-606 [PMID: 29990046]
  14. IEEE Trans Pattern Anal Mach Intell. 2019 Apr;41(4):788-800 [PMID: 29993769]
  15. JAMA. 2016 Dec 13;316(22):2402-2410 [PMID: 27898976]
  16. IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3614-3631 [PMID: 32191881]
  17. IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):3007-3021 [PMID: 30183620]
  18. Sensors (Basel). 2022 Jun 30;22(13): [PMID: 35808445]
  19. Chem Sci. 2018 Nov 26;10(2):370-377 [PMID: 30746086]
  20. IEEE Trans Med Imaging. 2021 Sep;40(9):2354-2366 [PMID: 33939609]
  21. IEEE Trans Pattern Anal Mach Intell. 2006 Dec;28(12):1931-47 [PMID: 17108368]
  22. IEEE J Biomed Health Inform. 2019 May;23(3):1290-1303 [PMID: 29994278]
  23. IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232 [PMID: 30703038]
  24. Mol Pharm. 2018 Oct 1;15(10):4398-4405 [PMID: 30180591]
  25. J Chem Phys. 2018 Nov 7;149(17):174111 [PMID: 30409009]
  26. Sci Rep. 2022 Feb 14;12(1):2392 [PMID: 35165330]
  27. Nat Methods. 2019 Dec;16(12):1233-1246 [PMID: 31133758]
  28. Comput Biol Med. 2021 Jul;134:104523 [PMID: 34091383]
  29. IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24 [PMID: 32217482]
  30. BMC Bioinformatics. 2018 May 8;19(Suppl 4):100 [PMID: 29745828]
  31. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  32. Inf Fusion. 2020 Dec;64:318-335 [PMID: 32834797]
  33. Biomed J. 2022 Jun;45(3):465-471 [PMID: 34628059]
  34. IEEE Trans Vis Comput Graph. 2020 Nov;26(11):3365-3385 [PMID: 31180860]
  35. IEEE Trans Image Process. 2016 Apr;25(4):1834-48 [PMID: 26841390]
  36. Nat Med. 2019 Jan;25(1):65-69 [PMID: 30617320]
  37. IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):8587-8601 [PMID: 34516372]
  38. BMC Bioinformatics. 2019 Aug 28;20(1):445 [PMID: 31455228]
  39. Chem Sci. 2018 Jun 22;9(28):6091-6098 [PMID: 30090297]
  40. Nucl Med Mol Imaging. 2018 Apr;52(2):109-118 [PMID: 29662559]
  41. IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):242-257 [PMID: 26978553]
  42. Sci Rep. 2016 May 17;6:26094 [PMID: 27185194]
  43. Brain Sci. 2020 Feb 22;10(2): [PMID: 32098333]
  44. Sci Rep. 2020 Apr 28;10(1):7155 [PMID: 32346050]
  45. IEEE Trans Med Imaging. 2020 Jun;39(6):1856-1867 [PMID: 31841402]
  46. Nat Biotechnol. 2018 Nov;36(10):983-987 [PMID: 30247488]
  47. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34571535]
  48. Acc Chem Res. 2021 Jan 19;54(2):263-270 [PMID: 33370107]
  49. IEEE Trans Cybern. 2022 Aug;52(8):7732-7741 [PMID: 33566780]
  50. Neural Comput. 2020 May;32(5):829-864 [PMID: 32186998]
  51. J Am Med Inform Assoc. 2018 Oct 1;25(10):1419-1428 [PMID: 29893864]
  52. Drug Discov Today. 2017 Nov;22(11):1680-1685 [PMID: 28881183]
  53. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  54. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):246-53 [PMID: 24579147]
  55. Nat Methods. 2019 Dec;16(12):1323-1331 [PMID: 31686039]
  56. Front Med. 2020 Aug;14(4):470-487 [PMID: 32728875]
  57. Neural Netw. 2001 Apr;14(3):257-74 [PMID: 11341565]
  58. J Chem Inf Model. 2019 Jun 24;59(6):2545-2559 [PMID: 31194543]
  59. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  60. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  61. Sensors (Basel). 2022 Jun 07;22(12): [PMID: 35746103]
  62. IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):855-68 [PMID: 19299860]
  63. Int J Environ Res Public Health. 2019 Mar 07;16(5): [PMID: 30866562]
  64. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  65. J Digit Imaging. 2017 Aug;30(4):400-405 [PMID: 28315069]
  66. IEEE Trans Vis Comput Graph. 2016 Dec;22(12):2633-2651 [PMID: 26731768]
  67. Sensors (Basel). 2022 Jul 07;22(14): [PMID: 35890799]
  68. ACS Cent Sci. 2016 Oct 26;2(10):725-732 [PMID: 27800555]
  69. Artif Intell Rev. 2023;56(2):865-913 [PMID: 35431395]
  70. IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):316-22 [PMID: 16468626]
  71. Nat Methods. 2021 Feb;18(2):203-211 [PMID: 33288961]
  72. Nature. 2018 Mar 28;555(7698):604-610 [PMID: 29595767]
  73. Phys Rev Lett. 2018 Apr 6;120(14):145301 [PMID: 29694125]
  74. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
  75. Brief Bioinform. 2018 Nov 27;19(6):1236-1246 [PMID: 28481991]
  76. Comput Struct Biotechnol J. 2020 Aug 07;18:2312-2325 [PMID: 32994890]
  77. J Big Data. 2021;8(1):101 [PMID: 34306963]
  78. IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2308-2322 [PMID: 34469317]
  79. Neural Comput. 2011 Jul;23(7):1661-74 [PMID: 21492012]
  80. Bioinformatics. 2021 Dec 11;37(24):4844-4850 [PMID: 34329376]
  81. Brief Funct Genomics. 2019 Feb 14;18(1):41-57 [PMID: 30265280]
  82. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):677-691 [PMID: 27608449]
  83. Med Image Anal. 2017 Dec;42:60-88 [PMID: 28778026]
  84. IEEE Trans Pattern Anal Mach Intell. 2013 Jul;35(7):1757-72 [PMID: 23682001]
  85. Mol Divers. 2021 Aug;25(3):1315-1360 [PMID: 33844136]
  86. Mol Pharm. 2017 Sep 5;14(9):3098-3104 [PMID: 28703000]
  87. ACS Cent Sci. 2018 Jan 24;4(1):120-131 [PMID: 29392184]
  88. Compr Rev Food Sci Food Saf. 2019 Nov;18(6):1793-1811 [PMID: 33336958]
  89. Sensors (Basel). 2020 Jul 31;20(15): [PMID: 32751868]
  90. Nature. 2015 Feb 26;518(7540):529-33 [PMID: 25719670]
  91. Comput Intell Neurosci. 2022 May 6;2022:2073482 [PMID: 35571702]
  92. IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828 [PMID: 23787338]
  93. IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1167-75 [PMID: 17926700]
  94. IEEE Trans Cybern. 2022 Aug;52(8):7242-7253 [PMID: 33502995]
  95. IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848 [PMID: 28463186]
  96. Sensors (Basel). 2022 Sep 08;22(18): [PMID: 36146139]
  97. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]
  98. IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495 [PMID: 28060704]
  99. Nat Rev Cardiol. 2019 May;16(5):261-274 [PMID: 30531869]
  100. J Biomed Inform. 2017 May;69:218-229 [PMID: 28410981]
  101. Springerplus. 2016 Apr 14;5:448 [PMID: 27119052]
  102. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]

MeSH Term

Deep Learning
Software
Engineering

Word Cloud

Created with Highcharts 10.0.0learningdeepdiversesensorsystemsdataDeepdevelopmentapplicationsacrosscomprehensivesurveypaperprovidesprocessingsystembecomepredominantmethodsolvinganalysisproblemsvirtuallyfieldsscienceengineeringincreasingcomplexitylargevolumecollectedspurredmethodsfundamentallytransformedwayacquiredprocessedanalyzedinterpretedrapidtechnologyever-increasingrangesuccessfulurgentneedprovideinvestigationdomainholisticviewaimscontributesystematicallyinvestigatingmodels/methodsalsosummaryimplementationtipslinkstutorialsopen-sourcecodespretrainedmodelscanserveexcellentself-containedreferencepractitionersseekinginnovatespaceadditioninsightsresearchtopicsyetwell-developedhighlightschallengesfutureopportunitiesservescatalystaccelerateapplicationtransformationLearningDiverseIntelligentSensorBasedSystemsInternetThingsagricultureaudiospeechbiomedicalimagingbiometricschemistrycomputervisioncontrolroboticscybersecurityfoodinformationnaturallanguageremotesensing

Similar Articles

Cited By