Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka, Bangladesh.

Nuhu Amin, Rehnuma Haque, Md Ziaur Rahman, Mohammed Ziaur Rahman, Zahid Hayat Mahmud, Rezaul Hasan, Md Tahmidul Islam, Protim Sarker, Supriya Sarker, Shaikh Daud Adnan, Nargis Akter, Dara Johnston, Mahbubur Rahman, Pengbo Liu, Yuke Wang, Tahmina Shirin, Mahbubur Rahman, Prosun Bhattacharya
Author Information
  1. Nuhu Amin: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW, 2007, Australia. Electronic address: nuhu.amin@icddrb.org.
  2. Rehnuma Haque: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; School of Medicine, Stanford University, Stanford, CA, USA.
  3. Md Ziaur Rahman: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  4. Mohammed Ziaur Rahman: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  5. Zahid Hayat Mahmud: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  6. Rezaul Hasan: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  7. Md Tahmidul Islam: COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden; WaterAid, Bangladesh.
  8. Protim Sarker: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  9. Supriya Sarker: Directorate General of Health Services (DGHS), Bangladesh.
  10. Shaikh Daud Adnan: Directorate General of Health Services (DGHS), Bangladesh.
  11. Nargis Akter: Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh.
  12. Dara Johnston: Water, Sanitation & Hygiene (WASH) section, UNICEF, Bangladesh.
  13. Mahbubur Rahman: Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh.
  14. Pengbo Liu: Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA.
  15. Yuke Wang: Center for Global Safe Water, Sanitation, and Hygiene, Emory University, Atlanta, GA, USA.
  16. Tahmina Shirin: Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh.
  17. Mahbubur Rahman: Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
  18. Prosun Bhattacharya: COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden.

Abstract

The detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater can be used as an indicator of the presence of SARS-CoV-2 infection in specific catchment areas. We conducted a hospital-based study to explore wastewater management in healthcare facilities and analyzed SARS-CoV-2 RNA in the hospital wastewater in Dhaka city during the Coronavirus disease (COVID-19) outbreak between September 2020-January 2021. We selected three COVID-hospitals, two non-COVID-hospitals, and one non-COVID-hospital with COVID wards, conducted spot-checks of the sanitation systems (i.e., toilets, drainage, and septic-tank), and collected 90 untreated wastewater effluent samples (68 from COVID and 22 from non-COVID hospitals). E. coli was detected using a membrane filtration technique and reported as colony forming unit (CFU). SARS-CoV-2 RNA was detected using the iTaq Universal Probes One-Step kit for RT-qPCR amplification of the SARS-CoV-2 ORF1ab and N gene targets and quantified for SARS-CoV-2 genome equivalent copies (GEC) per mL of sample. None of the six hospitals had a primary wastewater treatment facility; two COVID hospitals had functional septic tanks, and the rest of the hospitals had either broken onsite systems or no containment of wastewater. Overall, 100 % of wastewater samples were positive with a high concentration of E. coli (mean = 7.0 log CFU/100 mL). Overall, 67 % (60/90) samples were positive for SARS-CoV-2. The highest SARS-CoV-2 concentrations (median: 141 GEC/mL; range: 13-18,214) were detected in wastewater from COVID-hospitals, and in non-COVID-hospitals, the median SARS-CoV-2 concentration was 108 GEC/mL (range: 30-1829). Our results indicate that high concentrations of E. coli and SARS-CoV-2 were discharged through the hospital wastewater (both COVID and non-COVID) without treatment into the ambient water bodies. Although there is no evidence for transmission of SARS-CoV-2 via wastewater, this study highlights the significant risk posed by wastewater from health care facilities in Dhaka for the many other diseases that are spread via faecal oral route. Hospitals in low-income settings could function as sentinel sites to monitor outbreaks through wastewater-based epidemiological surveillance systems. Hospitals should aim to adopt the appropriate wastewater treatment technologies to reduce the discharge of pathogens into the environment and mitigate environmental exposures.

Keywords

References

  1. Int J Hyg Environ Health. 2020 Sep;230:113619 [PMID: 32942223]
  2. J Hazard Mater. 2021 Aug 5;415:125580 [PMID: 33735767]
  3. Nature. 2021 May;593(7860):616-617 [PMID: 34031580]
  4. Ecotoxicol Environ Saf. 2009 May;72(4):1076-81 [PMID: 19167756]
  5. Innovation (Camb). 2020 Nov 25;1(3):100061 [PMID: 33169119]
  6. Sci Total Environ. 2020 Nov 10;742:140680 [PMID: 32629273]
  7. Emerg Infect Dis. 2013 Aug;19(8):1222-30 [PMID: 23876456]
  8. J Environ Chem Eng. 2021 Apr;9(2):104812 [PMID: 33251108]
  9. Sci Total Environ. 2020 Aug 1;728:138764 [PMID: 32387778]
  10. Sci Total Environ. 2023 Feb 1;858(Pt 3):159350 [PMID: 36265620]
  11. Emerg Microbes Infect. 2020 Dec;9(1):386-389 [PMID: 32065057]
  12. Environ Res. 2022 Jan;203:111839 [PMID: 34358502]
  13. Int J Hyg Environ Health. 2021 Apr;233:113669 [PMID: 33578186]
  14. Am J Trop Med Hyg. 2018 Oct;99(4):916-923 [PMID: 30152311]
  15. Curr Opin Environ Sci Health. 2022 Jun;27:100334 [PMID: 35434440]
  16. J Hazard Mater. 2022 Jun 15;432:128667 [PMID: 35339834]
  17. Lancet Gastroenterol Hepatol. 2020 May;5(5):434-435 [PMID: 32199469]
  18. mSystems. 2020 Jul 21;5(4): [PMID: 32694130]
  19. Curr Pollut Rep. 2021;7(2):160-166 [PMID: 33842197]
  20. Nat Rev Gastroenterol Hepatol. 2021 Apr;18(4):269-283 [PMID: 33589829]
  21. Braz J Microbiol. 2012 Apr;43(2):675-81 [PMID: 24031879]
  22. Int J Environ Res Public Health. 2012 Jan;9(1):139-70 [PMID: 22470284]
  23. J Microbiol Methods. 2021 Oct;189:106320 [PMID: 34478762]
  24. BMC Public Health. 2008 Jan 26;8:36 [PMID: 18221548]
  25. Sci Total Environ. 2021 Mar 20;761:143192 [PMID: 33153744]
  26. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  27. Environ Sci Technol. 2017 Aug 1;51(15):8725-8734 [PMID: 28686435]
  28. Environ Sci Pollut Res Int. 2021 May;28(18):22221-22240 [PMID: 33733417]
  29. Gastroenterology. 2020 Jul;159(1):81-95 [PMID: 32251668]
  30. J Pain Symptom Manage. 2020 Aug;60(2):e93-e97 [PMID: 32333961]
  31. Sci Total Environ. 2020 Nov 1;741:140445 [PMID: 32599407]
  32. Environ Sci Technol Lett. 2020 May 20;7(7):511-516 [PMID: 37566285]
  33. Sci Total Environ. 2020 Oct 15;739:139076 [PMID: 32758929]
  34. Int J Infect Dis. 2020 May;94:103-106 [PMID: 32311449]
  35. Curr Opin Environ Sci Health. 2022 Oct 6;:100396 [PMID: 36320818]
  36. Int J Hyg Environ Health. 2021 Jan;231:113634 [PMID: 33039922]
  37. Emerg Infect Dis. 2020 Aug;26(8):1920-1922 [PMID: 32421494]
  38. JAMA Netw Open. 2021 Dec 1;4(12):e2137257 [PMID: 34905008]
  39. J Hosp Infect. 2016 Nov;94(3):286-294 [PMID: 27665311]
  40. Sci Total Environ. 2021 Jul 1;776:145724 [PMID: 33652314]
  41. J Infect Dev Ctries. 2022 Jan 31;16(1):10-15 [PMID: 35192516]
  42. Environ Health Perspect. 2022 May;130(5):57011 [PMID: 35617001]
  43. BMC Public Health. 2020 Oct 31;20(1):1632 [PMID: 33129296]
  44. Int J Environ Res Public Health. 2020 Dec 10;17(24): [PMID: 33321987]
  45. Am J Infect Control. 2014 Mar;42(3):305-10 [PMID: 24406254]
  46. Lancet. 2011 Jan 15;377(9761):228-41 [PMID: 21146207]
  47. Am J Trop Med Hyg. 2014 Aug;91(2):415-23 [PMID: 24914003]
  48. Sci Total Environ. 2020 Nov 20;744:140946 [PMID: 32687997]
  49. Sci Total Environ. 2021 Feb 10;755(Pt 2):143226 [PMID: 33176933]
  50. J Virol Methods. 2017 Nov;249:147-155 [PMID: 28844932]
  51. PLoS One. 2019 Dec 16;14(12):e0221193 [PMID: 31841549]
  52. Environ Pollut. 2022 Oct 15;311:119679 [PMID: 35753547]
  53. J Microbiol. 2007 Feb;45(1):48-52 [PMID: 17342055]
  54. Sci Total Environ. 2022 Feb 1;806(Pt 3):150680 [PMID: 34599955]
  55. J Environ Manage. 2022 Apr 15;308:114609 [PMID: 35101807]
  56. Int J Infect Dis. 2020 Dec;101:220-225 [PMID: 33031941]
  57. Gut Pathog. 2019 Nov 01;11:52 [PMID: 31695751]
  58. BMJ. 2020 Apr 21;369:m1443 [PMID: 32317267]
  59. Sci Total Environ. 2022 Jun 10;824:153816 [PMID: 35157870]

MeSH Term

Humans
COVID-19
SARS-CoV-2
Wastewater
RNA, Viral
Sanitation
Bangladesh
Escherichia coli
Hospitals

Chemicals

Wastewater
RNA, Viral

Word Cloud

Created with Highcharts 10.0.0wastewaterSARS-CoV-2RNACOVIDhospitalsfacilitiesDhakasanitationsystemssamplesnon-COVIDEcolidetectedtreatmentconductedstudyhospitalCOVID-hospitalstwonon-COVID-hospitalsusingmLOverall%positivehighconcentrationconcentrationsGEC/mLrange:viafaecalHospitalsdischargeBangladeshHospitaldetectionsevereacuterespiratorysyndromecoronavirus-2canusedindicatorpresenceinfectionspecificcatchmentareashospital-basedexploremanagementhealthcareanalyzedcityCoronavirusdiseaseCOVID-19outbreakSeptember2020-January2021selectedthreeonenon-COVID-hospitalwardsspot-checksietoiletsdrainageseptic-tankcollected90untreatedeffluent6822membranefiltrationtechniquereportedcolonyformingunitCFUiTaqUniversalProbesOne-StepkitRT-qPCRamplificationORF1abNgenetargetsquantifiedgenomeequivalentcopiesGECpersampleNonesixprimaryfacilityfunctionalseptictanksresteitherbrokenonsitecontainment100mean=70logCFU/1006760/90highestmedian:14113-18214median10830-1829resultsindicatedischargedwithoutambientwaterbodiesAlthoughevidencetransmissionhighlightssignificantriskposedhealthcaremanydiseasesspreadoralroutelow-incomesettingsfunctionsentinelsitesmonitoroutbreakswastewater-basedepidemiologicalsurveillanceaimadoptappropriatetechnologiesreducepathogensenvironmentmitigateenvironmentalexposuresDependencyinfrastructurecoliformviralFaecalcontaminationViralWastewater-basedepidemiology

Similar Articles

Cited By