The chromosome-scale genome assembly of the yellowtail clownfish Amphiprion clarkii provides insights into the melanic pigmentation of anemonefish.

Billy Moore, Marcela Herrera, Emma Gairin, Chengze Li, Saori Miura, Jeffrey Jolly, Manon Mercader, Michael Izumiyama, Erina Kawai, Timothy Ravasi, Vincent Laudet, Taewoo Ryu
Author Information
  1. Billy Moore: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  2. Marcela Herrera: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  3. Emma Gairin: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  4. Chengze Li: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
  5. Saori Miura: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  6. Jeffrey Jolly: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  7. Manon Mercader: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  8. Michael Izumiyama: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  9. Erina Kawai: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  10. Timothy Ravasi: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  11. Vincent Laudet: Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID
  12. Taewoo Ryu: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan. ORCID

Abstract

Anemonefish are an emerging group of model organisms for studying genetic, ecological, evolutionary, and developmental traits of coral reef fish. The yellowtail clownfish Amphiprion clarkii possesses species-specific characteristics such as inter-species co-habitation, high intra-species color variation, no anemone specificity, and a broad geographic distribution, that can increase our understanding of anemonefish evolutionary history, behavioral strategies, fish-anemone symbiosis, and color pattern evolution. Despite its position as an emerging model species, the genome of A. clarkii is yet to be published. Using PacBio long-read sequencing and Hi-C chromatin capture technology, we generated a high-quality chromosome-scale genome assembly initially comprised of 1,840 contigs with an N50 of 1,203,211 bp. These contigs were successfully anchored into 24 chromosomes of 843,582,782 bp and annotated with 25,050 protein-coding genes encompassing 97.0% of conserved actinopterygian genes, making the quality and completeness of this genome the highest among all published anemonefish genomes to date. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further analyses revealed higher copy numbers of erbb3b (a gene involved in melanocyte development) in A. clarkii compared with other anemonefish, thus suggesting a possible link between erbb3b and the natural melanism polymorphism observed in A. clarkii. The publication of this high-quality genome, along with A. clarkii's many unique traits, position this species as an ideal model organism for addressing scientific questions across a range of disciplines.

Keywords

References

  1. PLoS One. 2015 Mar 20;10(3):e0121778 [PMID: 25793877]
  2. BMC Evol Biol. 2006 Oct 06;6:79 [PMID: 17026767]
  3. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  4. Pharmacol Res. 2014 Sep;87:42-59 [PMID: 24928736]
  5. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  6. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  7. Bioinformatics. 2018 Jul 1;34(13):i142-i150 [PMID: 29949969]
  8. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  9. Evodevo. 2020 Oct 7;11:20 [PMID: 33042514]
  10. Mol Ecol. 2021 Aug;30(16):4039-4061 [PMID: 34145931]
  11. Mol Biol Evol. 2018 Jun 1;35(6):1553-1555 [PMID: 29668970]
  12. G3 (Bethesda). 2022 May 6;12(5): [PMID: 35353192]
  13. Oncol Rep. 2013 Dec;30(6):2563-70 [PMID: 24084886]
  14. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  15. Gigascience. 2018 Mar 1;7(3):1-6 [PMID: 29342277]
  16. BMC Genomics. 2019 May 9;20(1):359 [PMID: 31072301]
  17. Science. 1988 Jul 1;241(4861):42-52 [PMID: 3291115]
  18. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  19. Proc Biol Sci. 2016 Mar 30;283(1827):20160277 [PMID: 27030417]
  20. Mob DNA. 2021 Jan 12;12(1):2 [PMID: 33436076]
  21. G3 (Bethesda). 2018 May 4;8(5):1795-1806 [PMID: 29599177]
  22. Genome Biol. 2020 Sep 10;21(1):241 [PMID: 32912315]
  23. Cell Mol Life Sci. 2008 May;65(10):1566-84 [PMID: 18259690]
  24. Front Zool. 2014 Nov 18;11(1):81 [PMID: 25426157]
  25. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  26. Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354 [PMID: 33156333]
  27. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  28. Cancer Res. 2007 Jul 15;67(14):6544-8 [PMID: 17638862]
  29. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9079-84 [PMID: 8799157]
  30. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  31. Science. 2002 Aug 23;297(5585):1330-3 [PMID: 12154198]
  32. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  33. Brief Bioinform. 2017 Mar 1;18(2):205-214 [PMID: 26891983]
  34. Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2373-82 [PMID: 27071093]
  35. Genome Biol Evol. 2019 Mar 1;11(3):869-882 [PMID: 30830203]
  36. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  37. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  38. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  39. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  40. Clin Chem. 2004 Sep;50(9):1678-80 [PMID: 15331507]
  41. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21608-13 [PMID: 20007378]
  42. PLoS Genet. 2009 Jul;5(7):e1000544 [PMID: 19578401]
  43. Development. 2008 Aug;135(15):2603-14 [PMID: 18508863]
  44. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  45. Front Genet. 2021 Aug 04;12:707228 [PMID: 34422008]
  46. Cold Spring Harb Perspect Biol. 2015 Jun 01;7(6): [PMID: 26032716]
  47. NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108 [PMID: 33575650]
  48. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  49. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  50. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  51. PLoS Comput Biol. 2009 Dec;5(12):e1000598 [PMID: 20011106]
  52. IEEE/ACM Trans Comput Biol Bioinform. 2013 May-Jun;10(3):645-56 [PMID: 24091398]
  53. Bioinformatics. 2001 Sep;17(9):847-8 [PMID: 11590104]
  54. Mol Ecol Resour. 2018 Feb 17;: [PMID: 29455459]
  55. Oncogene. 2008 Sep 4;27(39):5195-203 [PMID: 18490922]
  56. Bioinformatics. 2020 May 1;36(9):2896-2898 [PMID: 31971576]
  57. Methods Mol Biol. 2012;859:29-51 [PMID: 22367864]
  58. Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34 [PMID: 25199790]
  59. Cell Motil Cytoskeleton. 1998;41(2):138-53 [PMID: 9786089]
  60. Mol Ecol. 2021 May;30(10):2366-2377 [PMID: 33197290]
  61. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34031155]
  62. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  63. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  64. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  65. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  66. BMC Biol. 2018 Sep 5;16(1):90 [PMID: 30180844]
  67. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  68. PLoS Genet. 2017 May 22;13(5):e1006795 [PMID: 28531189]
  69. Curr Opin Cell Biol. 2007 Feb;19(1):13-23 [PMID: 17178453]
  70. Nat Genet. 2017 Apr;49(4):643-650 [PMID: 28263316]
  71. Mol Ecol Resour. 2019 May;19(3):570-585 [PMID: 30203521]
  72. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(1):326-7 [PMID: 24617468]
  73. BMC Evol Biol. 2014 Nov 30;14:245 [PMID: 25433367]

MeSH Term

Animals
Perciformes
Fishes
Chromosomes
Genome
Pigmentation

Word Cloud

Created with Highcharts 10.0.0clarkiigenomeanemonefishmodelAmphiprionchromosome-scaleassemblygeneserbb3bemergingevolutionarytraitsyellowtailclownfishcolorpositionspeciespublishedhigh-quality1contigsbpgenemelanismpigmentationAnemonefishgrouporganismsstudyinggeneticecologicaldevelopmentalcoralreeffishpossessesspecies-specificcharacteristicsinter-speciesco-habitationhighintra-speciesvariationanemonespecificitybroadgeographicdistributioncanincreaseunderstandinghistorybehavioralstrategiesfish-anemonesymbiosispatternevolutionDespiteyetUsingPacBiolong-readsequencingHi-Cchromatincapturetechnologygeneratedinitiallycomprised840N50203211successfullyanchored24chromosomes843582782annotated25050protein-codingencompassing970%conservedactinopterygianmakingqualitycompletenesshighestamonggenomesdateTranscriptomicanalysisidentifiedtissue-specificexpressionpatternsbrainopticlobelargestnumberexpressedanalysesrevealedhighercopynumbersinvolvedmelanocytedevelopmentcomparedthussuggestingpossiblelinknaturalpolymorphismobservedpublicationalongclarkii'smanyuniqueidealorganismaddressingscientificquestionsacrossrangedisciplinesprovidesinsightsmelanic

Similar Articles

Cited By