Ecological landscapes guide the assembly of optimal microbial communities.

Ashish B George, Kirill S Korolev
Author Information
  1. Ashish B George: Department of Physics and Biological Design Center, Boston University, Boston, Massachusetts, United States of America. ORCID
  2. Kirill S Korolev: Department of Physics and Biological Design Center, Boston University, Boston, Massachusetts, United States of America. ORCID

Abstract

Assembling optimal microbial communities is key for various applications in biofuel production, agriculture, and human health. Finding the optimal community is challenging because the number of possible communities grows exponentially with the number of species, and so an exhaustive search cannot be performed even for a dozen species. A heuristic search that improves community function by adding or removing one species at a time is more practical, but it is unknown whether this strategy can discover an optimal or nearly optimal community. Using consumer-resource models with and without cross-feeding, we investigate how the efficacy of search depends on the distribution of resources, niche overlap, cross-feeding, and other aspects of community ecology. We show that search efficacy is determined by the ruggedness of the appropriately-defined ecological landscape. We identify specific ruggedness measures that are both predictive of search performance and robust to noise and low sampling density. The feasibility of our approach is demonstrated using experimental data from a soil microbial community. Overall, our results establish the conditions necessary for the success of the heuristic search and provide concrete design principles for building high-performing microbial consortia.

References

  1. Evol Appl. 2020 Jul 28;13(9):2460-2471 [PMID: 33005234]
  2. Elife. 2017 Mar 28;6: [PMID: 28350295]
  3. Phys Rev Lett. 2020 Jul 24;125(4):048101 [PMID: 32794828]
  4. J Hazard Mater. 2009 Nov 15;171(1-3):948-53 [PMID: 19632773]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042705 [PMID: 25974525]
  6. iScience. 2022 Jan 11;25(2):103761 [PMID: 35141504]
  7. Bioessays. 2017 Feb;39(2): [PMID: 28000336]
  8. Elife. 2022 Apr 11;11: [PMID: 35404785]
  9. Nature. 2019 Jan;565(7741):600-605 [PMID: 30675064]
  10. Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2215832120 [PMID: 37874854]
  11. Elife. 2018 Apr 17;7: [PMID: 29664397]
  12. PLoS Comput Biol. 2019 Feb 5;15(2):e1006793 [PMID: 30721227]
  13. PLoS Biol. 2019 Aug 30;17(8):e3000356 [PMID: 31469824]
  14. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15345-50 [PMID: 20705897]
  15. Theor Popul Biol. 1970 May;1(1):1-11 [PMID: 5527624]
  16. PLoS Biol. 2019 Dec 12;17(12):e3000550 [PMID: 31830028]
  17. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12804-12809 [PMID: 31186361]
  18. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14592-7 [PMID: 23959872]
  19. Cell Host Microbe. 2022 Feb 9;30(2):260-272.e5 [PMID: 35051349]
  20. Nature. 2012 Aug 16;488(7411):329-35 [PMID: 22895338]
  21. Nat Ecol Evol. 2017 Mar 27;1(5):109 [PMID: 28812687]
  22. Nat Commun. 2019 May 3;10(1):2052 [PMID: 31053707]
  23. Nat Ecol Evol. 2020 Jan;4(1):91-100 [PMID: 31844191]
  24. FEMS Microbiol Ecol. 2015 Mar;91(3): [PMID: 25764564]
  25. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9110-4 [PMID: 10890915]
  26. Protein Eng. 2001 Sep;14(9):633-8 [PMID: 11707608]
  27. Nat Commun. 2021 Nov 23;12(1):6799 [PMID: 34815384]
  28. Cell Syst. 2019 Sep 25;9(3):229-242.e4 [PMID: 31494089]
  29. Mol Syst Biol. 2018 Jun 21;14(6):e8157 [PMID: 29930200]
  30. J Theor Biol. 1987 Sep 7;128(1):11-45 [PMID: 3431131]
  31. Gut Microbes. 2012 Jul-Aug;3(4):289-306 [PMID: 22572875]
  32. Nat Commun. 2018 Jul 30;9(1):2970 [PMID: 30061657]
  33. Phys Rev E. 2019 May;99(5-1):052111 [PMID: 31212445]
  34. Science. 2008 May 23;320(5879):1034-9 [PMID: 18497287]
  35. Science. 2022 Oct 7;378(6615):85-89 [PMID: 36201585]
  36. PLoS Biol. 2019 Jun 25;17(6):e3000295 [PMID: 31237866]
  37. Nature. 2008 Feb 14;451(7180):822-5 [PMID: 18273017]
  38. Nat Commun. 2021 Nov 18;12(1):6661 [PMID: 34795267]
  39. Nature. 2017 Jun 1;546(7656):145-147 [PMID: 28538736]
  40. Evol Comput. 2004 Fall;12(3):303-25 [PMID: 15355603]
  41. Nat Commun. 2020 Mar 18;11(1):1440 [PMID: 32188849]
  42. Sci Rep. 2020 Feb 24;10(1):3308 [PMID: 32094388]
  43. PLoS Biol. 2016 Aug 24;14(8):e1002540 [PMID: 27557335]
  44. Trends Biotechnol. 2008 Sep;26(9):483-9 [PMID: 18675483]
  45. PLoS One. 2020 Mar 24;15(3):e0230430 [PMID: 32208436]
  46. Evolution. 2020 Oct;74(10):2392-2403 [PMID: 32888315]
  47. Phys Rev Lett. 2007 Apr 13;98(15):150201 [PMID: 17501322]
  48. Curr Opin Biotechnol. 2019 Aug;58:117-128 [PMID: 30952088]
  49. Bioresour Technol. 2017 Mar;227:247-255 [PMID: 28039824]
  50. Microb Ecol. 1996 May;31(3):225-47 [PMID: 8661534]
  51. Nat Prod Rep. 2018 May 1;35(5):455-488 [PMID: 29799048]
  52. Trends Ecol Evol. 1997 Nov;12(11):427-32 [PMID: 21238141]
  53. Nat Commun. 2021 May 31;12(1):3254 [PMID: 34059668]
  54. Am Nat. 2020 Sep;196(3):291-305 [PMID: 32813998]
  55. Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14572-14583 [PMID: 32518107]
  56. Nature. 2015 Jan 8;517(7533):205-8 [PMID: 25337874]
  57. Biotechnol Adv. 2019 Nov 1;37(6):107372 [PMID: 30880142]
  58. Curr Biol. 2020 Oct 5;30(19):R1176-R1188 [PMID: 33022263]
  59. mSystems. 2021 Dec 21;6(6):e0112521 [PMID: 34846165]
  60. ISME J. 2016 Sep;10(9):2077-84 [PMID: 26967105]
  61. PLoS One. 2010 May 26;5(5):e10834 [PMID: 20520808]
  62. Elife. 2016 Jun 16;5: [PMID: 27310530]
  63. Environ Microbiol. 2000 Oct;2(5):564-71 [PMID: 11233164]
  64. Nat Commun. 2016 Jun 17;7:11965 [PMID: 27311813]
  65. Nat Microbiol. 2024 Apr;9(4):1036-1048 [PMID: 38486074]
  66. Science. 2018 Aug 3;361(6401):469-474 [PMID: 30072533]
  67. Nat Biotechnol. 2013 Apr;31(4):309-15 [PMID: 23563425]
  68. Nat Ecol Evol. 2021 Jul;5(7):1011-1023 [PMID: 33986540]
  69. ISME J. 2014 Oct;8(10):2015-28 [PMID: 24739627]
  70. Elife. 2019 Nov 22;8: [PMID: 31756158]

Grants

  1. R01 GM138530/NIGMS NIH HHS

MeSH Term

Humans
Soil Microbiology
Microbiota
Microbial Consortia
Agriculture

Word Cloud

Created with Highcharts 10.0.0searchoptimalcommunitymicrobialcommunitiesspeciesnumberheuristiccross-feedingefficacyruggednessAssemblingkeyvariousapplicationsbiofuelproductionagriculturehumanhealthFindingchallengingpossiblegrowsexponentiallyexhaustiveperformedevendozenimprovesfunctionaddingremovingonetimepracticalunknownwhetherstrategycandiscovernearlyUsingconsumer-resourcemodelswithoutinvestigatedependsdistributionresourcesnicheoverlapaspectsecologyshowdeterminedappropriately-definedecologicallandscapeidentifyspecificmeasurespredictiveperformancerobustnoiselowsamplingdensityfeasibilityapproachdemonstratedusingexperimentaldatasoilOverallresultsestablishconditionsnecessarysuccessprovideconcretedesignprinciplesbuildinghigh-performingconsortiaEcologicallandscapesguideassembly

Similar Articles

Cited By