Cardioprotective effect of crude polysaccharide fermented by Trametes Sanguinea Lyoyd on doxorubicin-induced myocardial injury mice.

Chenjun Shen, Bo Yang, Lili Huang, Yueru Chen, Huajun Zhao, Zhihui Zhu
Author Information
  1. Chenjun Shen: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
  2. Bo Yang: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
  3. Lili Huang: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
  4. Yueru Chen: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
  5. Huajun Zhao: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China. zhj@zcmu.edu.cn.
  6. Zhihui Zhu: School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China. zhuzhihui@zcmu.edu.cn.

Abstract

Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms of Trametes Sanguinea Lyoyd fermented crude polysaccharide (TSLFACP) against DOX-induced cardiotoxicity. We investigated the protective effects of TSLFACP on myocardial injury and its possible mechanisms using two in vitro cells of DOX-treated cardiomyocytes H9C2 and embryonic myocardial cell line CCC-HEH-2 and a in vivo mouse model of DOX-induced myocardial injury. We found that TSLFACP could reverse DOX-induced toxicity in H9C2 and CCC-HEH-2 cells. Similarly, we found that when pretreatment with TSLFACP (200 mg/kg, i.g.) daily for 6 days, DOX-induced myocardial damage was attenuated, including the decrease in serum myocardial injury index, and the amelioration in cardiac histopathological morphology. Additionally, immunohistochemistry and western blotting were used to identify the underlying and possible signal pathways. We found that TSLFACP attenuated the expression of LC3-II, Beclin-1 and PRAP induced by DOX. In conclusion, our results demonstrated that TSLFACP could protect against DOX-induced cardiotoxicity by inhibiting autophagy and apoptosis.

Keywords

References

  1. Torki Z, et al. The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: an update. Cancer Chemother Pharmacol. 2021;88(5):771–93. [DOI: 10.1007/s00280-021-04337-8]
  2. Pan D, et al. Oxymatrine Synergistically Enhances Doxorubicin Anticancer Effects in Colorectal Cancer. Front Pharmacol. 2021;12:673432. [DOI: 10.3389/fphar.2021.673432]
  3. Gao L, et al. Total flavonoids of Selaginella tamariscina (P.Beauv.) Spring ameliorates doxorubicin-induced cardiotoxicity by modulating mitochondrial dysfunction and endoplasmic reticulum stress via activating MFN2/PERK. Phytomedicine. 2022;100:154065. [DOI: 10.1016/j.phymed.2022.154065]
  4. Marques-Aleixo I, et al. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer. 2018;1869(2):189–99. [DOI: 10.1016/j.bbcan.2018.01.002]
  5. Fang X, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672–80. [DOI: 10.1073/pnas.1821022116]
  6. Songbo M, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–8. [DOI: 10.1016/j.toxlet.2019.02.013]
  7. Tadokoro T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5(9): e132747. [DOI: 10.1172/jci.insight.132747]
  8. Koleini N, Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(28):46663–80. [DOI: 10.18632/oncotarget.16944]
  9. Bartlett JJ, et al. Pulinilkunnil, Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol. 2017;104:1–8. [DOI: 10.1016/j.yjmcc.2017.01.007]
  10. Zhang JY, et al. A polysaccharide of Dendrobium officinale ameliorates HO-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways. Int J Biol Macromol. 2017;104(Pt A):1–10. [DOI: 10.1016/j.ijbiomac.2017.05.169]
  11. Zhang M, et al. Structural characterization of a polysaccharide from Trametes sanguinea Lloyd with immune-enhancing activity via activation of TLR4. Int J Biol Macromol. 2022;206:1026–38. [DOI: 10.1016/j.ijbiomac.2022.03.072]
  12. Yan M, et al. Structural Characterization and Tumor Microvascular Inhibition Activity of Total Polysaccharide from Trametes sanguinea Lloyd. Chem Biodivers. 2022;19(3):e202100765. [DOI: 10.1002/cbdv.202100765]
  13. Wen J, et al. Salsolinol Attenuates Doxorubicin-Induced Chronic Heart Failure in Rats and Improves Mitochondrial Function in H9c2 Cardiomyocytes. Front Pharmacol. 2019;10:1135. [DOI: 10.3389/fphar.2019.01135]
  14. Brennan A, et al. An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins. J Biol Chem. 2022;298(2):101514. [DOI: 10.1016/j.jbc.2021.101514]
  15. Scherr AL, et al. Knockdown of Atg7 Induces Nuclear-LC3 Dependent Apoptosis and Augments Chemotherapy in Colorectal Cancer Cells. Int J Mol Sci. 2020;21(3):1099. [DOI: 10.3390/ijms21031099]
  16. Hill SM, et al. VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nat Chem Biol. 2021;17(4):448–55. [DOI: 10.1038/s41589-020-00726-x]
  17. Martello A, et al. Trichoplein binds PCM1 and controls endothelial cell function by regulating autophagy. EMBO Rep. 2020;21(7):e48192. [DOI: 10.15252/embr.201948192]
  18. Li L, et al. The role of G protein-coupled receptor kinase 4 in cardiomyocyte injury after myocardial infarction. Eur Heart J. 2021;42(14):1415–30. [DOI: 10.1093/eurheartj/ehaa878]
  19. Pu B, et al. miR-381 Reverses Multidrug Resistance by Negative Regulation of the CTNNB1/ABCB1 Pathway in HepG2/Dox Cells, and the Diagnostic and Prognostic Values of CTNNB1/ABCB1 Are Identified in Patients with LIHC. DNA Cell Biol. 2021;40(12):1584–96. [DOI: 10.1089/dna.2021.0689]
  20. Silva Dos Santos D. Embryonic stem cell-derived cardiomyocytes for the treatment of doxorubicin-induced cardiomyopathy. Stem Cell Res Ther. 2018;9(1):30. [DOI: 10.1186/s13287-018-0788-2]
  21. Rawat PS, et al. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139: 111708. [DOI: 10.1016/j.biopha.2021.111708]
  22. Yang Y, et al. Cardioprotective effects of a Fructus Aurantii polysaccharide in isoproterenol-induced myocardial ischemic rats. Int J Biol Macromol. 2020;155:995–1002. [DOI: 10.1016/j.ijbiomac.2019.11.063]
  23. Yuan R, et al. Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol-induced liver injury through reducing CYP2E1-dependent oxidative stress. Biomed Pharmacother. 2018;99:537–42. [DOI: 10.1016/j.biopha.2018.01.079]
  24. Hou G, et al. Protective effects of a Lachnum polysaccharide against liver and kidney injury induced by lead exposure in mice. Int J Biol Macromol. 2019;124:716–23. [DOI: 10.1016/j.ijbiomac.2018.11.133]
  25. Xu F, et al. Effects of Ganoderma lucidum polysaccharides against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2017;95:504–12. [DOI: 10.1016/j.biopha.2017.08.118]
  26. Cao Y, et al. Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget. 2017;8(3):4837–48. [DOI: 10.18632/oncotarget.13596]
  27. Ebeid DE, et al. PIM1 Promotes Survival of Cardiomyocytes by Upregulating c-Kit Protein Expression. Cells. 2020;9(9):2001. [DOI: 10.3390/cells9092001]
  28. Zhao L, et al. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 2018;15:284–96. [DOI: 10.1016/j.redox.2017.12.013]
  29. Mi X, et al. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti(3)C(2)-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron. 2021;192: 113482. [DOI: 10.1016/j.bios.2021.113482]
  30. Klionsky DJ, et al. Autophagy in major human diseases. Embo j. 2021;40(19):e108863. [DOI: 10.15252/embj.2021108863]
  31. Jiang P, Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods. 2015;75:13–8. [DOI: 10.1016/j.ymeth.2014.11.021]
  32. Ikeda S, Zablocki D, Sadoshima J. The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol. 2022;165:1–8. [DOI: 10.1016/j.yjmcc.2021.12.006]
  33. Pan H, et al. Lycium barbarum polysaccharide protects rats and cardiomyocytes against ischemia/reperfusion injury via Nrf2 activation through autophagy inhibition. Mol Med Rep. 2021;24(5):778. [DOI: 10.3892/mmr.2021.12418]
  34. Zhou X, et al. Protective Effect of a Novel Polysaccharide from Lonicera japonica on Cardiomyocytes of Mice Injured by Hydrogen Peroxide. Biomed Res Int. 2020;2020:5279193. [DOI: 10.1155/2020/5279193]
  35. Zhou SW, et al. Bufadienolides from the Eggs of the Toad Bufo bufo gargarizans and Their Antimelanoma Activities. J Nat Prod. 2021;84(5):1425–33. [DOI: 10.1021/acs.jnatprod.0c00840]

Grants

  1. 82104448/National Natural Science Foundation of China

MeSH Term

Doxorubicin
Trametes
Apoptosis
Polyporaceae
Oxidative Stress
Mice
Animals
Myocytes, Cardiac
Cardiotoxicity

Chemicals

Doxorubicin

Word Cloud

Created with Highcharts 10.0.0DOX-inducedTSLFACPmyocardialcardiotoxicityinjurypossibleTrametesSanguineaLyoydfermentedcrudepolysaccharidefoundDoxorubicinDOXeffectsmechanismscellsH9C2CCC-HEH-2attenuatedCardioprotectiveeffectbroad-spectrumanti-tumordrugclinicalapplicationgreatlylimitedThusexplorationeffectivetherapiesnecessaryaimstudyinvestigateinvestigatedprotectiveusingtwovitroDOX-treatedcardiomyocytesembryoniccelllinevivomousemodelreversetoxicitySimilarlypretreatment200 mg/kgigdaily6 daysdamageincludingdecreaseserumindexameliorationcardiachistopathologicalmorphologyAdditionallyimmunohistochemistrywesternblottingusedidentifyunderlyingsignalpathwaysexpressionLC3-IIBeclin-1PRAPinducedconclusionresultsdemonstratedprotectinhibitingautophagyapoptosisdoxorubicin-inducedmiceCardiotoxicity

Similar Articles

Cited By