Rapid evolution of unimodal but not of linear thermal performance curves in .

Ying-Jie Wang, Nedim Tüzün, Luc De Meester, Heidrun Feuchtmayr, Arnaud Sentis, Robby Stoks
Author Information
  1. Ying-Jie Wang: Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium. ORCID
  2. Nedim Tüzün: Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium. ORCID
  3. Luc De Meester: Laboratory of Aquatic Ecology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium. ORCID
  4. Heidrun Feuchtmayr: UK Centre for Ecology and Hydrology, Lancaster Environment Center, Lancaster LA1 4AP, UK. ORCID
  5. Arnaud Sentis: INRAE, Aix-Marseille Université, UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France. ORCID
  6. Robby Stoks: Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium. ORCID

Abstract

Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea . The heat-selected showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than ) top-down impact of may increase under rapid thermal evolution.

Keywords

Associated Data

Dryad | 10.5061/dryad.1jwstqjzq
figshare | 10.6084/m9.figshare.c.6350570

References

  1. Curr Biol. 2019 Oct 7;29(19):R996-R1007 [PMID: 31593684]
  2. Int J Endocrinol Metab. 2012 Spring;10(2):486-9 [PMID: 23843808]
  3. Science. 2001 Sep 21;293(5538):2248-51 [PMID: 11567137]
  4. Proc Biol Sci. 2018 Sep 12;285(1886): [PMID: 30209223]
  5. F1000Res. 2016 Dec 8;5:2835 [PMID: 28003883]
  6. Science. 2015 May 1;348(6234):571-3 [PMID: 25931559]
  7. Sci Total Environ. 2021 Jun 1;771:145167 [PMID: 33736151]
  8. Ecol Lett. 2013 Jan;16(1):64-71 [PMID: 23050790]
  9. Ecol Lett. 2011 Sep;14(9):914-21 [PMID: 21752171]
  10. Ecol Lett. 2016 Nov;19(11):1372-1385 [PMID: 27667778]
  11. Sci Rep. 2018 Dec 11;8(1):17771 [PMID: 30538260]
  12. J Exp Biol. 2019 Jun 5;222(Pt 11): [PMID: 31085593]
  13. J Exp Zool A Ecol Genet Physiol. 2008 Nov 1;309(9):553-62 [PMID: 18668644]
  14. PeerJ. 2020 Jun 19;8:e9377 [PMID: 32596054]
  15. Proc Biol Sci. 2023 Jan 11;290(1990):20222289 [PMID: 36629114]
  16. Evol Appl. 2017 Nov 15;11(1):96-111 [PMID: 29302275]
  17. Heredity (Edinb). 2005 Jan;94(1):3-12 [PMID: 15329665]
  18. Am Nat. 2009 Dec;174(6):755-68 [PMID: 19857158]
  19. Nat Ecol Evol. 2017 Mar 20;1(4):94 [PMID: 28812653]
  20. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72 [PMID: 18458348]
  21. Evolution. 2009 Jul;63(7):1867-78 [PMID: 19473405]
  22. Am Nat. 2005 Aug;166(2):184-98 [PMID: 16032573]
  23. J Anim Ecol. 2021 Jul;90(7):1666-1677 [PMID: 33724470]
  24. Integr Comp Biol. 2004 Dec;44(6):498-509 [PMID: 21676736]
  25. PLoS Biol. 2020 Oct 16;18(10):e3000894 [PMID: 33064736]
  26. Science. 2008 Jun 6;320(5881):1296-7 [PMID: 18535231]
  27. Philos Trans R Soc Lond B Biol Sci. 2017 Jan 19;372(1712): [PMID: 27920390]
  28. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33431560]
  29. J Evol Biol. 2021 May;34(5):767-778 [PMID: 33662149]
  30. Integr Comp Biol. 2011 Nov;51(5):691-702 [PMID: 21841184]
  31. Am Nat. 2006 Oct;168(4):512-20 [PMID: 17004222]
  32. J Insect Sci. 2003;3:34 [PMID: 15841249]
  33. Evolution. 1984 Mar;38(2):441-444 [PMID: 28555901]
  34. PLoS One. 2013;8(2):e56794 [PMID: 23437239]
  35. Ecology. 2020 Oct;101(10):e03134 [PMID: 32691873]
  36. Annu Rev Entomol. 2016;61:433-51 [PMID: 26667379]
  37. J Evol Biol. 2023 Jan;36(1):15-28 [PMID: 36129955]
  38. Glob Chang Biol. 2018 Oct;24(10):4554-4565 [PMID: 29940071]
  39. Science. 2020 Feb 7;367(6478):685-688 [PMID: 32029628]
  40. J Evol Biol. 2006 Nov;19(6):2006-21 [PMID: 17040398]
  41. Evol Appl. 2014 Jan;7(1):42-55 [PMID: 24454547]
  42. Evolution. 2016 Jan;70(1):195-206 [PMID: 26626438]
  43. Proc Biol Sci. 2012 May 22;279(1735):1873-82 [PMID: 22298849]
  44. Evolution. 2021 Aug;75(8):2074-2084 [PMID: 34192342]
  45. Ecol Evol. 2020 Jan 10;10(3):1368-1377 [PMID: 32076520]
  46. Ecology. 2020 Nov;101(11):e03146 [PMID: 32726861]

MeSH Term

Animals
Daphnia
Hot Temperature
Fertility
Phenotype
Population Growth
Temperature

Word Cloud

Created with Highcharts 10.0.0evolutionthermalrapidTPCsrateenergyperformancecurvestraitstemperaturesmaywarmingevolutionaryimpactmultipleexperimentalambientunimodalgrowthhighlineargaincostsSpeciescopeplasticresponsesreflectingplasticityconsideredpowerfultoolsunderstandectothermsrarelystudiedcapitalized2-yeartrialoutdoormesocosmskeptheated4°Ctestingfollow-upcommon-gardenexperimentkeywaterfleaheat-selectedshowedshiftssurvivalfecundityfirstclutchintrinsicpopulationtowardhigheroptimumlesspronounceddownwardcurvatureindicatingbetterabilitykeepfitnessacrossrangedetectedsomaticmassdevelopmentrelatedingestionmetabolicresultalsorelativeslopeversusvaryresultssuggestoverallrathertop-downincreaseRapidactivationenergeticefficiencygeneralist–specialisttrade-offhotter-is-betterhypothesis

Similar Articles

Cited By