Padinhare Cholakkal Harikesh, Chi-Yuan Yang, Han-Yan Wu, Silan Zhang, Mary J Donahue, April S Caravaca, Jun-Da Huang, Peder S Olofsson, Magnus Berggren, Deyu Tu, Simone Fabiano
Author Information
Padinhare Cholakkal Harikesh: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden. ORCID
Chi-Yuan Yang: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden. ORCID
Han-Yan Wu: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Silan Zhang: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Mary J Donahue: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden. ORCID
April S Caravaca: Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
Jun-Da Huang: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
Peder S Olofsson: Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden. ORCID
Magnus Berggren: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden. ORCID
Deyu Tu: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden. ORCID
Simone Fabiano: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden. simone.fabiano@liu.se. ORCID
Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.
References
Purves, D. et al. (eds). Neuroscience 3rd edn. (Sinauer Associates Inc., 2004).
Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).
[DOI: 10.3389/fnins.2011.00073]
Harikesh, P. C. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022).
[DOI: 10.1038/s41467-022-28483-6]
Hosseini, M. J. M. et al. Organic electronics Axon–Hillock neuromorphic circuit: towards biologically compatible, and physically flexible, integrate-and-fire spiking neural networks. J. Phys. Appl. Phys. 54, 104004 (2020).
[DOI: 10.1088/1361-6463/abc585]
Mahowald, M. & Douglas, R. A silicon neuron. Nature 354, 515–518 (1991).
[DOI: 10.1038/354515a0]
Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).
[DOI: 10.1038/nmat3510]
Yi, W. et al. Biological plausibility and stochasticity in scalable VO active memristor neurons. Nat. Commun. 9, 4661 (2018).
[DOI: 10.1038/s41467-018-07052-w]
Beck, M. E. et al. Spiking neurons from tunable Gaussian heterojunction transistors. Nat. Commun. 11, 1565 (2020).
[DOI: 10.1038/s41467-020-15378-7]
Covi, E. et al. Adaptive extreme edge computing for wearable devices. Front. Neurosci. 15, 611300 (2021).
[DOI: 10.3389/fnins.2021.611300]
Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 1–14 (2018).
[DOI: 10.1038/natrevmats.2017.86]
Berggren, M. et al. Ion electron–coupled functionality in materials and devices based on conjugated polymers. Adv. Mater. 31, 1805813 (2019).
[DOI: 10.1002/adma.201805813]
Xu, K. et al. On the origin of Seebeck coefficient inversion in highly doped conducting polymers. Adv. Funct. Mater. 32, 2112276 (2022).
[DOI: 10.1002/adfm.202112276]
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).
[DOI: 10.1113/jphysiol.1952.sp004764]
Xu, K. et al. Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nat. Mater. 19, 738–744 (2020).
[DOI: 10.1038/s41563-020-0618-7]
Fazzi, D. & Negri, F. Addressing the elusive polaronic nature of multiple redox states in a π-conjugated ladder-type polymer. Adv. Electron. Mater. 7, 2000786 (2021).
[DOI: 10.1002/aelm.202000786]
Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).
[DOI: 10.1038/144710a0]
Wu, H.-Y. et al. Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers. Adv. Mater. 34, 2106235 (2022).
[DOI: 10.1002/adma.202106235]
Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004).
[DOI: 10.1109/TNN.2004.832719]
Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).
Longtin, A. & Hinzer, K. Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comput. 8, 215–255 (1996).
[DOI: 10.1162/neco.1996.8.2.215]
Buesing, L., Bill, J., Nessler, B. & Maass, W. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput. Biol. 7, e1002211 (2011).
[DOI: 10.1371/journal.pcbi.1002211]
Simons, T. J. B. Calcium and neuronal function. Neurosurg. Rev. 11, 119–129 (1988).
[DOI: 10.1007/BF01794675]
Suzuki, S. & Rogawski, M. A. T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons. Proc. Natl Acad. Sci. USA 86, 7228–7232 (1989).
[DOI: 10.1073/pnas.86.18.7228]
McCormick, D. A. GABA as an inhibitory neurotransmitter in human cerebral cortex. J. Neurophysiol. 62, 1018–1027 (1989).
[DOI: 10.1152/jn.1989.62.5.1018]
Ben-Menachem, E. et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 20, 221–227 (1995).
[DOI: 10.1016/0920-1211(94)00083-9]
Johnson, R. L. & Wilson, C. G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213 (2018).
[DOI: 10.2147/JIR.S163248]
Caravaca, A. S. et al. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc. Natl Acad. Sci. USA 119, e2023285119 (2022).
[DOI: 10.1073/pnas.2023285119]
Donahue, M. et al. Wireless optoelectronic devices for vagus nerve stimulation in mice. J. Neural Eng. 19, 066031 (2022).
[DOI: 10.1088/1741-2552/aca1e3]
Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).
[DOI: 10.1073/pnas.1701740114]
Pavlov, V. A. & Tracey, K. J. Bioelectronic medicine: preclinical insights and clinical advances. Neuron 110, 3627–3644 (2022).
[DOI: 10.1016/j.neuron.2022.09.003]
Arnold, F. E. & Van Deusen, R. L. Preparation and properties of high molecular weight, soluble oxobenz[de] imidazobenzimidazoisoquinoline ladder polymer. Macromolecules 2, 497–502 (1969).
[DOI: 10.1021/ma60011a009]
Braendlein, M., Lonjaret, T., Leleux, P., Badier, J.-M. & Malliaras, G. G. Voltage amplifier based on organic electrochemical transistor. Adv. Sci. 4, 1600247 (2017).
[DOI: 10.1002/advs.201600247]
Donahue, M. J. et al. Multimodal characterization of neural networks using highly transparent electrode arrays. eNeuro 5, ENEURO.0187-18.2018 (2018).
Caravaca, A. S. et al. An effective method for acute vagus nerve stimulation in experimental inflammation. Front. Neurosci. 13, 877 (2019).
[DOI: 10.3389/fnins.2019.00877]