Utilisation of deep learning for COVID-19 diagnosis.

S Aslani, J Jacob
Author Information
  1. S Aslani: Centre for Medical Image Computing and Department of Respiratory Medicine, University College London, London, UK. Electronic address: a.shahab@ucl.ac.uk.
  2. J Jacob: Centre for Medical Image Computing and Department of Respiratory Medicine, University College London, London, UK.

Abstract

The COVID-19 pandemic that began in 2019 has resulted in millions of deaths worldwide. Over this period, the economic and healthcare consequences of COVID-19 infection in survivors of acute COVID-19 infection have become apparent. During the course of the pandemic, computer analysis of medical images and data have been widely used by the medical research community. In particular, deep-learning methods, which are artificial intelligence (AI)-based approaches, have been frequently employed. This paper provides a review of deep-learning-based AI techniques for COVID-19 diagnosis using chest radiography and computed tomography. Thirty papers published from February 2020 to March 2022 that used two-dimensional (2D)/three-dimensional (3D) deep convolutional neural networks combined with transfer learning for COVID-19 detection were reviewed. The review describes how deep-learning methods detect COVID-19, and several limitations of the proposed methods are highlighted.

References

  1. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780 [PMID: 33705321]
  2. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  3. Radiology. 2020 Aug;296(2):E65-E71 [PMID: 32191588]
  4. IEEE Trans Med Imaging. 2020 Aug;39(8):2615-2625 [PMID: 33156775]
  5. Nat Med. 2020 Aug;26(8):1224-1228 [PMID: 32427924]
  6. Radiology. 2020 Aug;296(2):E32-E40 [PMID: 32101510]
  7. Int J Med Inform. 2020 Dec;144:104284 [PMID: 32992136]
  8. IEEE Trans Med Imaging. 2020 Aug;39(8):2653-2663 [PMID: 32730215]
  9. Comput Methods Programs Biomed. 2020 Nov;196:105581 [PMID: 32534344]
  10. Chaos Solitons Fractals. 2020 Nov;140:110122 [PMID: 32834634]
  11. Radiology. 2020 Apr;295(1):202-207 [PMID: 32017661]
  12. Radiology. 2020 Jul;296(1):172-180 [PMID: 32255413]
  13. Phys Eng Sci Med. 2020 Jun;43(2):635-640 [PMID: 32524445]
  14. N Engl J Med. 2020 May 21;382(21):2049-2055 [PMID: 32202722]
  15. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  16. Future Gener Comput Syst. 2020 Jun;107:215-228 [PMID: 32494091]
  17. IEEE Access. 2020;8:115041-115050 [PMID: 32742893]
  18. Radiology. 2020 Aug;296(2):E46-E54 [PMID: 32155105]
  19. IEEE J Biomed Health Inform. 2020 Oct;24(10):2806-2813 [PMID: 32915751]
  20. Comput Biol Med. 2020 Jun;121:103795 [PMID: 32568676]
  21. Comput Biol Med. 2020 Jun;121:103792 [PMID: 32568675]
  22. Inform Med Unlocked. 2020;19:100360 [PMID: 32501424]
  23. IEEE Trans Med Imaging. 2020 Aug;39(8):2626-2637 [PMID: 32730213]
  24. IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700 [PMID: 32396075]
  25. J Clin Imaging Sci. 2020 Jun 09;10:35 [PMID: 32547838]
  26. Radiology. 2021 Feb;298(2):E98-E106 [PMID: 33201791]
  27. Eur Radiol. 2020 Aug;30(8):4381-4389 [PMID: 32193638]
  28. Nat Microbiol. 2020 May;5(5):675-678 [PMID: 32265517]
  29. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11 [PMID: 32613207]
  30. Eur Respir J. 2020 Aug 13;56(2): [PMID: 32616598]
  31. Sci Rep. 2020 Nov 11;10(1):19549 [PMID: 33177550]
  32. Sci Rep. 2020 Nov 5;10(1):19196 [PMID: 33154542]
  33. Pattern Recognit Lett. 2020 Oct;138:638-643 [PMID: 32958971]
  34. J Med Biol Eng. 2020;40(3):462-469 [PMID: 32412551]
  35. IEEE Trans Med Imaging. 2020 Aug;39(8):2584-2594 [PMID: 32730211]
  36. Front Med (Lausanne). 2020 Dec 23;7:608525 [PMID: 33425953]
  37. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  38. Med Hypotheses. 2020 Jul;140:109761 [PMID: 32344309]
  39. Chaos Solitons Fractals. 2020 Nov;140:110245 [PMID: 32921934]
  40. Comput Biol Med. 2020 Jul;122:103869 [PMID: 32658740]
  41. IEEE Access. 2020 May 14;8:91916-91923 [PMID: 34192100]
  42. Clin Imaging. 2020 Aug;64:35-42 [PMID: 32302927]
  43. IEEE Trans Med Imaging. 2020 Aug;39(8):2572-2583 [PMID: 32730210]
  44. PLoS One. 2020 Jul 9;15(7):e0235844 [PMID: 32645053]
  45. Radiology. 2020 Aug;296(2):E115-E117 [PMID: 32073353]
  46. J Thorac Oncol. 2020 May;15(5):700-704 [PMID: 32114094]
  47. JAMA. 2020 May 12;323(18):1843-1844 [PMID: 32159775]
  48. Neural Comput Appl. 2021;33(24):17589-17609 [PMID: 34345118]
  49. Front Med (Lausanne). 2022 Mar 10;8:729287 [PMID: 35360446]
  50. Radiology. 2020 Aug;296(2):E41-E45 [PMID: 32049601]
  51. Appl Soft Comput. 2021 Jan;98:106897 [PMID: 33199977]

MeSH Term

Humans
Artificial Intelligence
COVID-19
COVID-19 Testing
Deep Learning
Pandemics

Word Cloud

Created with Highcharts 10.0.0COVID-19methodspandemicinfectionmedicaluseddeep-learningAIreviewdiagnosisdeeplearningbegan2019resultedmillionsdeathsworldwideperiodeconomichealthcareconsequencessurvivorsacutebecomeapparentcoursecomputeranalysisimagesdatawidelyresearchcommunityparticularartificialintelligence-basedapproachesfrequentlyemployedpaperprovidesdeep-learning-basedtechniquesusingchestradiographycomputedtomographyThirtypaperspublishedFebruary2020March2022two-dimensional2D/three-dimensional3DconvolutionalneuralnetworkscombinedtransferdetectionrevieweddescribesdetectseverallimitationsproposedhighlightedUtilisation

Similar Articles

Cited By