Heterogeneity is a key factor describing the initial outbreak of COVID-19.

Sungchan Kim, Arsen Abdulali, Sunmi Lee
Author Information
  1. Sungchan Kim: Department of Applied Mathematics, Kyung Hee University, Republic of Korea.
  2. Arsen Abdulali: Department of Engineering, University of Cambridge, United Kingdom.
  3. Sunmi Lee: Department of Applied Mathematics, Kyung Hee University, Republic of Korea.

Abstract

Assessing the transmission potential of emerging infectious diseases, such as COVID-19, is crucial for implementing prompt and effective intervention policies. The basic reproduction number is widely used to measure the severity of the early stages of disease outbreaks. The basic reproduction number of standard ordinary differential equation models is computed for homogeneous contact patterns; however, realistic contact patterns are far from homogeneous, specifically during the early stages of disease transmission. Heterogeneity of contact patterns can lead to superspreading events that show a significantly high level of heterogeneity in generating secondary infections. This is primarily due to the large variance in the contact patterns of complex human behaviours. Hence, in this work, we investigate the impacts of heterogeneity in contact patterns on the basic reproduction number by developing two distinct model frameworks: 1) an SEIR-Erlang ordinary differential equation model and 2) an SEIR stochastic agent-based model. Furthermore, we estimated the transmission probability of both models in the context of COVID-19 in South Korea. Our results highlighted the importance of heterogeneity in contact patterns and indicated that there should be more information than one quantity (the basic reproduction number as the mean quantity), such as a degree-specific basic reproduction number in the distributional sense when the contact pattern is highly heterogeneous.

Keywords

References

  1. Proc Biol Sci. 2007 Feb 22;274(1609):599-604 [PMID: 17476782]
  2. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  3. Philos Trans R Soc Lond B Biol Sci. 2021 Jul 19;376(1829):20210001 [PMID: 34053252]
  4. Nature. 2005 Nov 17;438(7066):355-9 [PMID: 16292310]
  5. Science. 2009 Jul 24;325(5939):412-3 [PMID: 19628854]
  6. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  7. J R Soc Interface. 2013 May 15;10(84):20130098 [PMID: 23676892]
  8. Int J Environ Res Public Health. 2021 Mar 29;18(7): [PMID: 33805362]
  9. PLoS Comput Biol. 2021 Jul 26;17(7):e1009149 [PMID: 34310589]
  10. J Theor Biol. 2005 Jan 7;232(1):71-81 [PMID: 15498594]
  11. J R Soc Interface. 2020 Jul;17(168):20200144 [PMID: 32693748]
  12. J R Soc Interface. 2021 Aug;18(181):20210444 [PMID: 34404230]
  13. Epidemics. 2021 Jun;35:100459 [PMID: 34015676]
  14. Int J Infect Dis. 2011 Aug;15(8):e510-3 [PMID: 21737332]
  15. J Math Biol. 2007 Nov;55(5-6):803-16 [PMID: 17684743]
  16. Philos Trans A Math Phys Eng Sci. 2013 Feb 18;371(1987):20120375 [PMID: 23419844]
  17. Infect Chemother. 2016 Jun;48(2):147-9 [PMID: 27433389]
  18. Nature. 2005 Nov 17;438(7066):293-5 [PMID: 16292292]
  19. PLoS Med. 2005 Jul;2(7):e174 [PMID: 16013892]
  20. J R Soc Interface. 2016 Oct;13(123): [PMID: 27707909]
  21. Infect Dis Model. 2022 Mar;7(1):30-44 [PMID: 34869960]
  22. Phys Rev Lett. 2001 Dec 31;87(27 Pt 1):278701 [PMID: 11800921]
  23. Nat Protoc. 2014 Feb;9(2):439-56 [PMID: 24457334]
  24. Phys Biol. 2020 Oct 13;17(6):065008 [PMID: 32702678]
  25. J Math Biol. 1990;28(4):365-82 [PMID: 2117040]
  26. Bioinformatics. 2018 Oct 15;34(20):3591-3593 [PMID: 29762723]
  27. J R Stat Soc Ser A Stat Soc. 2022 May 26;: [PMID: 35942192]
  28. Chaos. 2021 Mar;31(3):033131 [PMID: 33810752]
  29. IEEE Access. 2021 Mar 08;9:41456-41467 [PMID: 36281327]
  30. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29416-29418 [PMID: 33139561]
  31. PLoS Comput Biol. 2013;9(1):e1002803 [PMID: 23341757]
  32. Lancet. 2016 Sep 3;388(10048):942-3 [PMID: 27402382]
  33. Int J Environ Res Public Health. 2020 Aug 24;17(17): [PMID: 32846960]
  34. PLoS Biol. 2020 Nov 12;18(11):e3000897 [PMID: 33180773]
  35. PLoS Comput Biol. 2021 Jul 26;17(7):e1009098 [PMID: 34310590]
  36. PLoS One. 2021 Jul 20;16(7):e0250050 [PMID: 34283842]
  37. Int J Environ Res Public Health. 2022 Mar 29;19(7): [PMID: 35409740]
  38. Sci Rep. 2021 Apr 21;11(1):8581 [PMID: 33883601]

Word Cloud

Created with Highcharts 10.0.0contactreproductionnumberpatternsbasictransmissionCOVID-19differentialheterogeneitymodelearlystagesdiseaseordinaryhomogeneousHeterogeneityequation modelprobabilityquantityAssessingpotentialemerginginfectiousdiseasescrucialimplementingprompteffectiveinterventionpolicieswidelyusedmeasureseverityoutbreaksstandardequation modelscomputedhoweverrealisticfarspecificallycanleadsuperspreadingeventsshowsignificantlyhighlevelgeneratingsecondaryinfectionsprimarilyduelargevariancecomplexhumanbehavioursHenceworkinvestigateimpactsdevelopingtwodistinctframeworks:1SEIR-Erlang2SEIRstochasticagent-basedFurthermoreestimatedmodelscontextSouthKorearesultshighlightedimportanceindicatedinformationonemeandegree-specificdistributionalsensepatternhighlyheterogeneouskeyfactordescribinginitialoutbreakAgent-basedBasicOrdinaryScale-freenetworkSuperspreadingeventTransmission

Similar Articles

Cited By