Extensive field evidence for the release of HONO from the photolysis of nitrate aerosols.

Simone T Andersen, Lucy J Carpenter, Chris Reed, James D Lee, Rosie Chance, Tomás Sherwen, Adam R Vaughan, Jordan Stewart, Pete M Edwards, William J Bloss, Roberto Sommariva, Leigh R Crilley, Graeme J Nott, Luis Neves, Katie Read, Dwayne E Heard, Paul W Seakins, Lisa K Whalley, Graham A Boustead, Lauren T Fleming, Daniel Stone, Khanneh Wadinga Fomba
Author Information
  1. Simone T Andersen: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  2. Lucy J Carpenter: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  3. Chris Reed: FAAM Airborne Laboratory, Cranfield, UK. ORCID
  4. James D Lee: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  5. Rosie Chance: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  6. Tomás Sherwen: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  7. Adam R Vaughan: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  8. Jordan Stewart: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK.
  9. Pete M Edwards: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  10. William J Bloss: School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK. ORCID
  11. Roberto Sommariva: School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK. ORCID
  12. Leigh R Crilley: School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK. ORCID
  13. Graeme J Nott: FAAM Airborne Laboratory, Cranfield, UK. ORCID
  14. Luis Neves: Instituto Nacional de Meteorologia e Geofísica, São Vicente (INMG), Mindelo, Cabo Verde. ORCID
  15. Katie Read: Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK. ORCID
  16. Dwayne E Heard: School of Chemistry, University of Leeds, Leeds, UK. ORCID
  17. Paul W Seakins: School of Chemistry, University of Leeds, Leeds, UK. ORCID
  18. Lisa K Whalley: FAAM Airborne Laboratory, Cranfield, UK. ORCID
  19. Graham A Boustead: School of Chemistry, University of Leeds, Leeds, UK. ORCID
  20. Lauren T Fleming: School of Chemistry, University of Leeds, Leeds, UK. ORCID
  21. Daniel Stone: School of Chemistry, University of Leeds, Leeds, UK. ORCID
  22. Khanneh Wadinga Fomba: Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany. ORCID

Abstract

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NO (NO and NO), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NO back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O in both polluted and clean environments.

References

  1. Environ Sci Technol. 2014 Dec 16;48(24):14386-91 [PMID: 25401515]
  2. Phys Chem Chem Phys. 2008 Oct 1;10(37):5668-77 [PMID: 18956101]
  3. J Adv Model Earth Syst. 2021 Apr;13(4):e2020MS002413 [PMID: 34221240]
  4. Chemphyschem. 2007 Jun 4;8(8):1137-44 [PMID: 17427162]
  5. Phys Chem Chem Phys. 2014 Feb 14;16(6):2358-67 [PMID: 24352159]
  6. Sci Rep. 2019 Mar 13;9(1):4351 [PMID: 30867442]
  7. J Phys Chem A. 2008 Dec 25;112(51):13275-81 [PMID: 19053540]
  8. J Phys Chem B. 2009 Apr 2;113(13):4102-10 [PMID: 19239253]
  9. Environ Sci Technol. 2014 Oct 21;48(20):11991-2001 [PMID: 25271384]
  10. J Phys Chem A. 2011 May 5;115(17):4279-87 [PMID: 21462986]
  11. J Air Waste Manag Assoc. 2014 Nov;64(11):1232-50 [PMID: 25509545]
  12. Nature. 2016 Apr 28;532(7600):489-91 [PMID: 27064904]
  13. Atmos Chem Phys. 2020 Jul;20(13):7753-7781 [PMID: 33688335]
  14. J Phys Chem A. 2010 Feb 25;114(7):2561-8 [PMID: 20121260]
  15. Environ Sci Technol. 2012 Oct 2;46(19):10447-54 [PMID: 22506935]
  16. Environ Sci Technol. 2020 Apr 7;54(7):3831-3839 [PMID: 32126769]
  17. Science. 2011 Sep 16;333(6049):1616-8 [PMID: 21852453]
  18. Science. 1983 Jun 10;220(4602):1148-51 [PMID: 17818494]
  19. Environ Sci Technol. 2016 Apr 5;50(7):3530-6 [PMID: 26936001]
  20. Nature. 2008 Jun 26;453(7199):1232-5 [PMID: 18580948]
  21. J Phys Chem B. 2006 Dec 28;110(51):25598-602 [PMID: 17181193]
  22. Environ Sci Technol. 2001 Aug 1;35(15):3207-12 [PMID: 11506004]
  23. J Phys Chem A. 2011 Jun 16;115(23):5810-21 [PMID: 21291193]
  24. Science. 2014 Apr 18;344(6181):292-6 [PMID: 24744373]
  25. Environ Sci Technol. 2007 Jun 1;41(11):3898-903 [PMID: 17612166]
  26. Environ Sci Technol. 2017 Jun 20;51(12):6849-6856 [PMID: 28505434]
  27. Environ Sci Technol. 2018 Dec 4;52(23):13738-13746 [PMID: 30407797]
  28. J Phys Chem Lett. 2013 Sep 5;4(17):2994-8 [PMID: 26706126]
  29. Environ Sci Technol. 2017 Jul 5;51(13):7442-7449 [PMID: 28581733]
  30. Environ Sci Technol. 2013 Jan 15;47(2):815-20 [PMID: 23237269]
  31. Environ Sci Technol. 2021 Jan 19;55(2):854-861 [PMID: 33393757]

Word Cloud

Created with Highcharts 10.0.0NOphotolysisHONO[Formula:seetext]nitrateimportantimplicationsOHdiscrepanciesrateconstantsevidencerenoxificationaerosolsfieldreleaseParticulatelongconsideredpermanentsinkremovinggaseouspollutantcentralairqualityinfluencesglobalself-cleansingcapacityatmosphereEvidenceemergingcanrecyclebackgasphasepotentiallytroposphericozonebudgetshoweversubstantial"renoxification"Usingaircraftground-basedobservationsremoteAtlantictroposphereshowoccurringmixedmarineefficiencyincreasesrelativehumiditydecreasesconcentrationthuslargelyreconcilinglargefoundacrossmultiplelaboratorystudiesActiveaerosolatmosphericoxidantsOpollutedcleanenvironmentsExtensive

Similar Articles

Cited By