estimation of anisotropic mechanical properties of the gastrocnemius during functional loading with MR elastography.
Daniel R Smith, Diego A Caban-Rivera, L Tyler Williams, Elijah E W Van Houten, Phil V Bayly, Keith D Paulsen, Matthew D J McGarry, Curtis L Johnson
Author Information
Daniel R Smith: Department of Biomedical Engineering, University of Delaware, 19711, Newark DE, United States of America. ORCID
Diego A Caban-Rivera: Department of Biomedical Engineering, University of Delaware, 19711, Newark DE, United States of America.
L Tyler Williams: Department of Biomedical Engineering, University of Delaware, 19711, Newark DE, United States of America.
Elijah E W Van Houten: Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
Phil V Bayly: Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis MO, United States of America.
Keith D Paulsen: Thayer School of Engineering, Dartmouth College, 03755, Hanover NH, United States of America.
Matthew D J McGarry: Thayer School of Engineering, Dartmouth College, 03755, Hanover NH, United States of America.
Curtis L Johnson: Department of Biomedical Engineering, University of Delaware, 19711, Newark DE, United States of America.
中文译文
English
.imaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness (μ1), substrate shear stiffness (μ2), shear anisotropy (ϕ), and tensile anisotropy (ζ) of the gastrocnemius muscle in response to both passive and active tension.. In passive tension, we found a significant increase inμ1,ϕ,andζwith increasing muscle length. While in active tension, we observed increasingμ2and decreasingϕandζduring active dorsiflexion and plantarflexion-indicating less anisotropy-with greater effects when the muscles act as agonist.. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.
Muscle Nerve. 2011 Sep;44(3):318-31
[PMID: 21949456 ]
Front Physiol. 2020 Mar 19;11:253
[PMID: 32265741 ]
Clin Anat. 2010 Jul;23(5):497-511
[PMID: 20544947 ]
J Mech Behav Biomed Mater. 2019 Oct;98:108-120
[PMID: 31226553 ]
J Acoust Soc Am. 2022 Apr;151(4):2403
[PMID: 35461517 ]
Acta Myol. 2015 Dec;34(2-3):95-108
[PMID: 27199536 ]
Indian J Radiol Imaging. 2014 Jul;24(3):210-6
[PMID: 25114383 ]
Rheumatology (Oxford). 2016 Mar;55(3):441-9
[PMID: 26412808 ]
NMR Biomed. 2009 Dec;22(10):1047-53
[PMID: 19618408 ]
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:270-275
[PMID: 31374641 ]
J Physiol. 1914 Dec 22;49(1-2):10-6
[PMID: 16993311 ]
J Appl Physiol (1985). 2020 Apr 1;128(4):978-999
[PMID: 32163334 ]
IEEE Trans Med Imaging. 2013 Oct;32(10):1901-9
[PMID: 23797239 ]
J Magn Reson Imaging. 2007 Feb;25(2):301-9
[PMID: 17260391 ]
J Mech Behav Biomed Mater. 2018 Jan;77:734-744
[PMID: 28803705 ]
Exerc Sport Sci Rev. 2012 Jan;40(1):50-57
[PMID: 22295281 ]
J Appl Physiol (1985). 2022 May 1;132(5):1267-1279
[PMID: 35358402 ]
J Mech Behav Biomed Mater. 2013 Jul;23:117-32
[PMID: 23680651 ]
J Magn Reson Imaging. 2016 Apr;43(4):773-88
[PMID: 26221741 ]
Semin Musculoskelet Radiol. 2017 Sep;21(4):459-469
[PMID: 28772322 ]
Magn Reson Med. 2003 Jan;49(1):193-7
[PMID: 12509838 ]
J Mech Behav Biomed Mater. 2013 Jan;17:209-20
[PMID: 23127635 ]
Curr Med Imaging Rev. 2012;8(1):46-55
[PMID: 26361467 ]
Magn Reson Med. 2016 Apr;75(4):1537-45
[PMID: 25988407 ]
Magn Reson Med. 2017 Dec;78(6):2360-2372
[PMID: 28097687 ]
Med Sci Sports Exerc. 1998 Nov;30(11):1616-23
[PMID: 9813875 ]
J Appl Physiol (1985). 2019 May 1;126(5):1465-1473
[PMID: 30605398 ]
Phys Med Biol. 2021 Feb 26;66(5):
[PMID: 32512548 ]
Sci Rep. 2019 May 2;9(1):6852
[PMID: 31048765 ]
Prog Biophys Biophys Chem. 1957;7:255-318
[PMID: 13485191 ]
J Magn Reson. 2018 Jun;291:73-83
[PMID: 29705042 ]
J Obes. 2013;2013:298675
[PMID: 23606951 ]
Neuroimage. 2013 Oct 1;79:145-52
[PMID: 23644001 ]
Med Image Anal. 2022 May;78:102432
[PMID: 35358836 ]
Brain Multiphys. 2022;3:
[PMID: 36340644 ]
NMR Biomed. 2012 Jun;25(6):852-8
[PMID: 22246866 ]
Eur Radiol. 2020 Dec;30(12):6603-6613
[PMID: 32666321 ]
J Athl Train. 2001 Dec;36(4):369-375
[PMID: 12937478 ]
Neuroimage. 2012 Aug 15;62(2):782-90
[PMID: 21979382 ]
Sports Med. 1997 May;23(5):287-305
[PMID: 9181667 ]
Phys Med Biol. 2016 Dec 21;61(24):R401-R437
[PMID: 27845941 ]
J Magn Reson Imaging. 2006 Jul;24(1):182-90
[PMID: 16729262 ]
Front Physiol. 2020 Aug 20;11:1021
[PMID: 32973555 ]
Neurol Res. 2011 Dec;33(10):1016-24
[PMID: 22196753 ]
Nature. 1971 Oct 22;233(5321):533-8
[PMID: 4939977 ]
J Biomech Eng. 2014 Nov;136(11):
[PMID: 25068816 ]
J Biomech. 1999 Apr;32(4):329-45
[PMID: 10213024 ]
Acta Physiol Scand. 1976 Feb;96(2):267-76
[PMID: 1258672 ]
Front Physiol. 2015 Jun 10;6:174
[PMID: 26113821 ]
J Biomech. 2015 Nov 26;48(15):4002-4009
[PMID: 26476762 ]
J Biomech. 2016 Feb 8;49(3):493-5
[PMID: 26776929 ]
Geroscience. 2020 Feb;42(1):311-321
[PMID: 31865527 ]
Magn Reson Med. 2020 Jul;84(1):103-114
[PMID: 31774210 ]
Arch Phys Med Rehabil. 2002 Nov;83(11):1530-6
[PMID: 12422320 ]
J Physiol. 1966 May;184(1):170-92
[PMID: 5921536 ]
J Biomech Eng. 2020 Jul 1;142(7):
[PMID: 32006012 ]
J Appl Physiol (1985). 2008 Feb;104(2):551-8
[PMID: 18162480 ]
J Biomech. 1989;22(8-9):943-8
[PMID: 2613728 ]
J Biomech. 2011 Feb 3;44(3):397-401
[PMID: 21074773 ]
Magn Reson Med. 1997 Apr;37(4):484-93
[PMID: 9094069 ]
NMR Biomed. 2013 Nov;26(11):1387-94
[PMID: 23640745 ]
J Magn Reson Imaging. 2017 Oct;46(4):1115-1127
[PMID: 28218814 ]
AJR Am J Roentgenol. 2015 Aug;205(2):W207-15
[PMID: 26204309 ]
AJR Am J Roentgenol. 1986 Mar;146(3):565-74
[PMID: 3484872 ]
J Mech Behav Biomed Mater. 2019 Jan;89:199-208
[PMID: 30292169 ]
Phys Med Biol. 2011 Jul 7;56(13):N153-64
[PMID: 21654044 ]
Med Image Anal. 2021 Dec;74:102212
[PMID: 34587584 ]
J Physiol. 2011 Mar 1;589(Pt 5):1195-208
[PMID: 21224224 ]
Clin Anat. 2003 May;16(3):215-23
[PMID: 12673816 ]
R01 EB027577/NIBIB NIH HHS
Elasticity Imaging Techniques
Anisotropy
Muscle, Skeletal
Magnetic Resonance Imaging
Biomechanical Phenomena