Type I inositol polyphosphate-4-phosphatase (INPP4A) belongs to the group of phosphoinositide phosphatases controlling proliferation, apoptosis, and endosome function by hydrolyzing phosphatidylinositol 3,4-bisphosphate. INPP4A produces multiple transcripts encoding shorter and longer INPP4A isoforms with hydrophilic or hydrophobic C-terminus. Biallelic INPP4A truncating variants cause a spectrum of neurodevelopmental disorders ranging from moderate intellectual disability to postnatal microcephaly with developmental and epileptic encephalopathy and (ponto)cerebellar hypoplasia. We report a girl with the novel homozygous INPP4A variant NM_001134224.2:c.2840del/p.(Gly947Glufs*12) (isoform d). She presented with postnatal microcephaly, global developmental delay, visual impairment, myoclonic seizures, and pontocerebellar hypoplasia and died at the age of 27 months. The level of mutant INPP4A mRNAs in proband-derived leukocytes was comparable to controls suggesting production of C-terminally altered INPP4A isoforms. We transiently expressed eGFP-tagged INPP4A isoform a (NM_004027.3) wildtype and p.(Gly908Glufs*12) mutant [p.(Gly947Glufs*12) according to NM_001134224.2] as well as INPP4A isoform b (NM_001566.2) wildtype and p.(Asp915Alafs*2) mutant, previously reported in family members with moderate intellectual disability, in HeLa cells and determined their subcellular distributions. While INPP4A isoform a was preferentially found in perinuclear clusters co-localizing with the GTPase Rab5, isoform b showed a net-like distribution, possibly localizing near and/or on microtubules. Quantification of intracellular localization patterns of the two INPP4A mutants revealed significant differences compared with the respective wildtype and similarity with each other. Our data suggests an important non-redundant function of INPP4A isoforms with hydrophobic or hydrophilic C-terminus in the brain.
Phan TK, Williams SA, Bindra GK, Lay FT, Poon IKH, Hulett MD (2019) Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ 26(5):781–793. https://doi.org/10.1038/s41418-018-0269-2
[DOI: 10.1038/s41418-018-0269-2]
Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657. https://doi.org/10.1038/nature05185
[DOI: 10.1038/nature05185]
Posor Y, Jang W, Haucke V (2022) Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol 23(12):797–816. https://doi.org/10.1038/s41580-022-00490-x
[DOI: 10.1038/s41580-022-00490-x]
Li H, Marshall AJ (2015) Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal 27(9):1789–1798. https://doi.org/10.1016/j.cellsig.2015.05.013
[DOI: 10.1016/j.cellsig.2015.05.013]
Norris FA, Auethavekiat V, Majerus PW (1995) The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270(27):16128–16133. https://doi.org/10.1074/jbc.270.27.16128
[DOI: 10.1074/jbc.270.27.16128]
Norris FA, Majerus PW (1994) Hydrolysis of phosphatidylinositol 3,4-bisphosphate by inositol polyphosphate 4-phosphatase isolated by affinity elution chromatography. J Biol Chem 269(12):8716–8720
[DOI: 10.1016/S0021-9258(17)37027-8]
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA (2012) Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 58:215–279. https://doi.org/10.1007/978-94-007-3012-0_7
[DOI: 10.1007/978-94-007-3012-0_7]
Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA (2005) The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16(5):2218–2233. https://doi.org/10.1091/mbc.e04-09-0799
[DOI: 10.1091/mbc.e04-09-0799]
Norris FA, Atkins RC, Majerus PW (1997) Inositol polyphosphate 4-phosphatase is inactivated by calpain-mediated proteolysis in stimulated human platelets. J Biol Chem 272(17):10987–10989. https://doi.org/10.1074/jbc.272.17.10987
[DOI: 10.1074/jbc.272.17.10987]
Shearn CT, Walker J, Norris FA (2001) Identification of a novel spliceoform of inositol polyphosphate 4-phosphatase type Ialpha expressed in human platelets: structure of human inositol polyphosphate 4-phosphatase type I gene. Biochem Biophys Res Commun 286(1):119–125. https://doi.org/10.1006/bbrc.2001.5331
[DOI: 10.1006/bbrc.2001.5331]
Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32(2):203–212. https://doi.org/10.1016/s0896-6273(01)00468-8
[DOI: 10.1016/s0896-6273(01)00468-8]
Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465(7297):497–501. https://doi.org/10.1038/nature09023
[DOI: 10.1038/nature09023]
Sachs AJ, David SA, Haider NB, Nystuen AM (2009) Patterned neuroprotection in the Inpp4a(wbl) mutant mouse cerebellum correlates with the expression of Eaat4. PLoS One 4(12):e8270. https://doi.org/10.1371/journal.pone.0008270
[DOI: 10.1371/journal.pone.0008270]
Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Puttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi MJ, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW, Tzschach A, Kahrizi K, Ropers HH (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478(7367):57–63. https://doi.org/10.1038/nature10423
[DOI: 10.1038/nature10423]
Sheffer R, Bennett-Back O, Yaacov B, Edvardson S, Gomori M, Werner M, Fahham D, Anteby I, Frumkin A, Meiner V, Elpeleg O (2015) Hindbrain malformation and myoclonic seizures associated with a deleterious mutation in the INPP4A gene. Neurogenetics 16(1):23–26. https://doi.org/10.1007/s10048-014-0428-7
[DOI: 10.1007/s10048-014-0428-7]
Banihashemi S, Tahmasebi-Birgani M, Mohammadiasl J, Hajjari M (2020) Whole exome sequencing identified a novel nonsense INPP4A mutation in a family with intellectual disability. Eur J Med Genet 63(4):103846. https://doi.org/10.1016/j.ejmg.2020.103846
[DOI: 10.1016/j.ejmg.2020.103846]
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560
[DOI: 10.1093/bioinformatics/bty560]
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324
[DOI: 10.1093/bioinformatics/btp324]
Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, Chen X, Kim Y, Beyter D, Krusche P, Saunders CT (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15(8):591–594. https://doi.org/10.1038/s41592-018-0051-x
[DOI: 10.1038/s41592-018-0051-x]
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110
[DOI: 10.1101/gr.107524.110]
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The ensembl variant effect predictor. Genome Biol 17(1):122. https://doi.org/10.1186/s13059-016-0974-4
[DOI: 10.1186/s13059-016-0974-4]
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database C, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443. https://doi.org/10.1038/s41586-020-2308-7
[DOI: 10.1038/s41586-020-2308-7]
Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, Gambin T, Bayram Y, Chinn IK, Karaca E, Punetha J, Poli C, Baylor-Hopkins Center for Mendelian G, Boerwinkle E, Shaw CA, Orange JS, Gibbs RA, Lappalainen T, Lupski JR, Carvalho CMB (2018) Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet 103(2):171–87. https://doi.org/10.1016/j.ajhg.2018.06.009
Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170(4):607–618. https://doi.org/10.1083/jcb.200505128
[DOI: 10.1083/jcb.200505128]
Wang H, Loerke D, Bruns C, Muller R, Koch PA, Puchkov D, Schultz C, Haucke V (2020) Phosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway. J Biol Chem 295(4):1091–1104. https://doi.org/10.1074/jbc.RA119.011774
[DOI: 10.1074/jbc.RA119.011774]