Photocatalytic activity of P-doped TiO photocatalyst.

Raffaella Rescigno, Olga Sacco, Vincenzo Venditto, Alessandra Fusco, Giovanna Donnarumma, Mariateresa Lettieri, Rosalba Fittipaldi, Vincenzo Vaiano
Author Information
  1. Raffaella Rescigno: Department of Chemistry and Biology, INSTM Unit, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy.
  2. Olga Sacco: Department of Chemistry and Biology, INSTM Unit, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy.
  3. Vincenzo Venditto: Department of Chemistry and Biology, INSTM Unit, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy. vvenditto@unisa.it. ORCID
  4. Alessandra Fusco: Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Sant'Andrea delle Dame Complex, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy.
  5. Giovanna Donnarumma: Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Sant'Andrea delle Dame Complex, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Naples, Italy. giovanna.donnarumma@unicampania.it.
  6. Mariateresa Lettieri: CNR-SPIN, c/o University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.
  7. Rosalba Fittipaldi: CNR-SPIN, c/o University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.
  8. Vincenzo Vaiano: Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy.

Abstract

In this study, P-doped TiO photocatalysts with different molar percentages (in the range 0.071-1.25 mol %) of the non-metallic element were prepared and their photocatalytic activity under visible light irradiation was tested. All achieved samples were characterized by XRD, Raman, UV-Vis DRS and SEM-EDX techniques. XRD and Raman analysis showed that all doped photocatalysts were in anatase phase and evidenced that P ions were successfully incorporated into the TiO crystal lattice, affecting also the crystallinity degree of the P-doped TiO photocatalysts. Noticeably, the UV-Vis DRS spectra evidenced that the highest redshift in absorption edge was observed for the photocatalyst with the lowest P content (0.071PT), which showed also the lowest bandgap (2.9 eV). The photocatalytic performances of all P-doped TiO samples were compared with that of commercial TiO by evaluating the decolorization of methylene blue (MB) dye under visible light irradiation. Results showed that phosphorus doping strongly promoted photocatalytic activity in the presence of visible light. Furthermore, the most active photocatalyst in visible light tests (0.071PT) also showed better photocatalytic activity than commercial TiO in the decolorization of MB under simulated sunlight irradiation. Finally, 0.071PT photocatalyst was preliminarily tested against Escherichia coli (E. coli) under simulated solar light, showing an inactivation efficiency of 90% after 2 h of treatment time.

Keywords

References

  1. Lee, J., & Gouma, P. I. (2012). Sol-Gel processed oxide photocatalysts. In M. Aparicio, A. Jitianu, & L. C. Klein (Eds.), Sol-Gel processing for conventional and alternative energy (pp. 217–237). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4614-1957-0_11 [DOI: 10.1007/978-1-4614-1957-0_11]
  2. Meng, X.; Eluagwule, B.; Wang, M.; Wang, L.; Zhang, J. 2020 Solar photocatalysis for environmental remediation. In handbook of smart photocatalytic materials. Elsevier, pp 183–195. https://doi.org/10.1016/B978-0-12-819049-4.00013-1
  3. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919–9986. https://doi.org/10.1021/cr5001892 [DOI: 10.1021/cr5001892]
  4. Yadav, H. M., Kim, J.-S., & Pawar, S. H. (2016). Developments in photocatalytic antibacterial activity of nano TiO2: A review. Korean Journal of Chemical Engineering, 33(7), 1989–1998. https://doi.org/10.1007/s11814-016-0118-2 [DOI: 10.1007/s11814-016-0118-2]
  5. Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036 [DOI: 10.1016/j.apcatb.2012.05.036]
  6. Ohtani, B. (2013). Titania photocatalysis beyond recombination: A critical review. Catalysts, 3(4), 942–953. https://doi.org/10.3390/catal3040942 [DOI: 10.3390/catal3040942]
  7. Peng, Y.-H., Huang, G.-F., & Huang, W.-Q. (2012). Visible-light absorption and photocatalytic activity of Cr-Doped TiO2 nanocrystal films. Advanced Powder Technology, 23(1), 8–12. https://doi.org/10.1016/j.apt.2010.11.006 [DOI: 10.1016/j.apt.2010.11.006]
  8. Mancuso, A., Sacco, O., Vaiano, V., Sannino, D., Pragliola, S., Venditto, V., & Morante, N. (2021). Visible light active Fe-Pr Co-doped TiO2 for water pollutants degradation. Catalysis Today, 380, 93–104. https://doi.org/10.1016/j.cattod.2021.04.018 [DOI: 10.1016/j.cattod.2021.04.018]
  9. Lin, L., Lin, W., Zhu, Y., Zhao, B., & Xie, Y. (2005). Phosphor-doped titania —a novel photocatalyst active in visible light. Chemistry Letters, 34(3), 284–285. https://doi.org/10.1246/cl.2005.284 [DOI: 10.1246/cl.2005.284]
  10. Liu, G., Chen, Z., Dong, C., Zhao, Y., Li, F., Lu, G. Q., & Cheng, H.-M. (2006). Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework. The Journal of Physical Chemistry B, 110(42), 20823–20828. https://doi.org/10.1021/jp062946m [DOI: 10.1021/jp062946m]
  11. Yu, W., Liu, X., Pan, L., Li, J., Liu, J., Zhang, J., Li, P., Chen, C., & Sun, Z. (2014). Enhanced visible light photocatalytic degradation of methylene Blue by F-doped TiO2. Applied Surface Science, 319, 107–112. https://doi.org/10.1016/j.apsusc.2014.07.038 [DOI: 10.1016/j.apsusc.2014.07.038]
  12. Piątkowska, A., Janus, M., Szymański, K., & Mozia, S. (2021). C-, N- and S-doped TiO2 photocatalysts: A review. Catalysts, 11(1), 144. https://doi.org/10.3390/catal11010144 [DOI: 10.3390/catal11010144]
  13. Patil, S. B., Basavarajappa, P. S., Ganganagappa, N., Jyothi, M. S., Raghu, A. V., & Reddy, K. R. (2019). Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. International Journal of Hydrogen Energy, 44(26), 13022–13039. https://doi.org/10.1016/j.ijhydene.2019.03.164 [DOI: 10.1016/j.ijhydene.2019.03.164]
  14. Gopal, N. O., Lo, H.-H., Ke, T.-F., Lee, C.-H., Chou, C.-C., Wu, J.-D., Sheu, S.-C., & Ke, S.-C. (2012). Visible light active phosphorus-doped TiO nanoparticles: An EPR evidence for the enhanced charge separation. Journal of Physical Chemistry C, 116(30), 16191–16197. https://doi.org/10.1021/jp212346f [DOI: 10.1021/jp212346f]
  15. Yu, J. C., Zhang, L., Zheng, Z., & Zhao, J. (2003). Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials, 15(11), 2280–2286. https://doi.org/10.1021/cm0340781 [DOI: 10.1021/cm0340781]
  16. Zouzelka, R., & Rathousky, J. (2017). Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Applied Catalysis B: Environmental, 217, 466–476. https://doi.org/10.1016/j.apcatb.2017.06.009 [DOI: 10.1016/j.apcatb.2017.06.009]
  17. Dosa, M., Piumetti, M., Bensaid, S., Andana, T., Galletti, C., Fino, D., & Russo, N. (2019). Photocatalytic abatement of volatile organic compounds by TiO nanoparticles doped with either phosphorous or zirconium. Materials, 12(13), 2121. https://doi.org/10.3390/ma12132121 [DOI: 10.3390/ma12132121]
  18. Ansari, S. A., & Cho, M. H. (2016). Highly visible light responsive, narrow band gap TiO nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Science and Reports, 6(1), 25405. https://doi.org/10.1038/srep25405 [DOI: 10.1038/srep25405]
  19. Yu, H.-F. (2007). Photocatalytic abilities of gel-derived P-doped TiO. Journal of Physics and Chemistry of Solids, 68(4), 600–607. https://doi.org/10.1016/j.jpcs.2007.01.050 [DOI: 10.1016/j.jpcs.2007.01.050]
  20. Mendiola-Alvarez, S. Y., Aracely Hernández-Ramírez, M., Guzmán-Mar, J. L., Garza-Tovar, L. L., & Hinojosa-Reyes, L. (2019). Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation. Environmental Science Pollution Research, 26(5), 4180–4191. https://doi.org/10.1007/s11356-018-2314-6 [DOI: 10.1007/s11356-018-2314-6]
  21. Dutta, D. P., & Raval, P. (2018). Effect of transition metal ion (Cr, Mn and Cu ) doping on the photocatalytic properties of ZnWO Nanoparticles. Journal Photochemistry Photobiology Chemistry, 357, 193–200. https://doi.org/10.1016/j.jphotochem.2018.02.026 [DOI: 10.1016/j.jphotochem.2018.02.026]
  22. Mohamed, R. M., & Aazam, E. (2013). Synthesis and characterization of P-Doped TiO thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese Journal of Catalysis, 34(6), 1267–1273. https://doi.org/10.1016/S1872-2067(12)60572-5 [DOI: 10.1016/S1872-2067(12)60572-5]
  23. Jin, C., Zheng, R. Y., Guo, Y., Xie, J. L., Zhu, Y. X., & Xie, Y. C. (2009). Hydrothermal synthesis and characterization of phosphorous-doped TiO with high photocatalytic activity for methylene blue degradation. Journal of Molecular Catalalysis A Chemical, 313(1–2), 44–48. https://doi.org/10.1016/j.molcata.2009.07.021 [DOI: 10.1016/j.molcata.2009.07.021]
  24. Huang, R., Zhang, S., Ding, J., Meng, Y., Zhong, Q., Kong, D., & Gu, C. (2019). Effect of adsorption properties of phosphorus-doped TiO2 nanotubes on photocatalytic NO removal. Journal of Colloid and Interface Science, 553, 647–654. https://doi.org/10.1016/j.jcis.2019.06.063 [DOI: 10.1016/j.jcis.2019.06.063]
  25. Lv, Y., Yu, L., Huang, H., Liu, H., & Feng, Y. (2009). Preparation, characterization of P-doped TiO nanoparticles and their excellent photocatalystic properties under the solar light irradiation. Journal of Alloys and Compounds, 488(1), 314–319. https://doi.org/10.1016/j.jallcom.2009.08.116 [DOI: 10.1016/j.jallcom.2009.08.116]
  26. Yang, K., Dai, Y., & Huang, B. (2007). Understanding photocatalytic activity of S- and P-doped TiO under visible light from first-principles. Journal of Physical Chemistry C, 111(51), 18985–18994. https://doi.org/10.1021/jp0756350 [DOI: 10.1021/jp0756350]
  27. Raj, K. J. A., Viswanathan, B. (2009) Effect of Surface Area, Pore Volume and Particle Size of P25 Titania on the Phase Transformation of Anatase to Rutile. Indian J Chem 5
  28. Zaleska, A. (2008). Doped-TiO: A review. Recent Patents Engineering, 2(3), 157–164. https://doi.org/10.2174/187221208786306289 [DOI: 10.2174/187221208786306289]
  29. Zeng, J.-B., Li, K.-A., & Du, A.-K. (2015). Compatibilization strategies in poly(Lactic Acid)-based blends. RSC Advances, 5(41), 32546–32565. https://doi.org/10.1039/C5RA01655J [DOI: 10.1039/C5RA01655J]
  30. Yogi, C., Kojima, K., Takai, T., & Wada, N. (2009). Photocatalytic degradation of methylene blue by Au-deposited TiO film under UV irradiation. Journal of Materials Science, 44(3), 821–827. https://doi.org/10.1007/s10853-008-3151-7 [DOI: 10.1007/s10853-008-3151-7]
  31. Rauf, M. A., Meetani, M. A., Khaleel, A., & Ahmed, A. (2010). Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157(2–3), 373–378. https://doi.org/10.1016/j.cej.2009.11.017 [DOI: 10.1016/j.cej.2009.11.017]
  32. Wang, X., Sø, L., Su, R., Wendt, S., Hald, P., Mamakhel, A., Yang, C., Huang, Y., Iversen, B. B., & Besenbacher, F. (2014). The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol. Journal of Catalysis, 310, 100–108. https://doi.org/10.1016/j.jcat.2013.04.022 [DOI: 10.1016/j.jcat.2013.04.022]
  33. Puddu, V., Choi, H., Dionysiou, D. D., & Puma, G. L. (2010). TiO Photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Applied Catalysis B: Environmental, 94(3–4), 211–218. https://doi.org/10.1016/j.apcatb.2009.08.003 [DOI: 10.1016/j.apcatb.2009.08.003]
  34. Ohtani, B., Ogawa, Y., & Nishimoto, S. (1997). Photocatalytic activity of amorphous−anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. The Journal of Physical Chemistry B, 101(19), 3746–3752. https://doi.org/10.1021/jp962702+ [DOI: 10.1021/jp962702+]
  35. Zheng, R., Lin, L., Xie, J., Zhu, Y., & Xie, Y. (2008). State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. Journal of Physical Chemistry C, 112(39), 15502–15509. https://doi.org/10.1021/jp806121m [DOI: 10.1021/jp806121m]
  36. Niu, J., Lu, P., Kang, M., Deng, K., Yao, B., Yu, X., & Zhang, Q. (2014). P-Doped TiO with superior visible-light activity prepared by rapid microwave hydrothermal method. Applied Surface Science, 319, 99–106. https://doi.org/10.1016/j.apsusc.2014.07.048 [DOI: 10.1016/j.apsusc.2014.07.048]

MeSH Term

Escherichia coli
Catalysis
Light
Titanium
Methylene Blue

Chemicals

titanium dioxide
Titanium
Methylene Blue

Word Cloud

Created with Highcharts 10.0.0TiOlightactivityP-doped0photocatalyticvisibleshowedphotocatalystphotocatalystsirradiationalso071PTcolitestedsamplesXRDRamanUV-VisDRSevidencedPlowestcommercialdecolorizationmethyleneblueMBsimulatedEscherichiastudydifferentmolarpercentagesrange071-125 mol%non-metallicelementpreparedachievedcharacterizedSEM-EDXtechniquesanalysisdopedanatasephaseionssuccessfullyincorporatedcrystallatticeaffectingcrystallinitydegreeNoticeablyspectrahighestredshiftabsorptionedgeobservedcontentbandgap29 eVperformancescomparedevaluatingdyeResultsphosphorusdopingstronglypromotedpresenceFurthermoreactivetestsbettersunlightFinallypreliminarilyEsolarshowinginactivationefficiency90%2 htreatmenttimePhotocatalyticAntibacterialPhosphorus-doped-TiO2PhotocatalysisSolarVisible

Similar Articles

Cited By