Development of a versatile nuclease prime editor with upgraded precision.

Xiangyang Li, Guiquan Zhang, Shisheng Huang, Yao Liu, Jin Tang, Mingtian Zhong, Xin Wang, Wenjun Sun, Yuan Yao, Quanjiang Ji, Xiaolong Wang, Jianghuai Liu, Shiqiang Zhu, Xingxu Huang
Author Information
  1. Xiangyang Li: Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China.
  2. Guiquan Zhang: Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
  3. Shisheng Huang: Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
  4. Yao Liu: Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
  5. Jin Tang: Zhejiang Lab, Hangzhou, Zhejiang, 311121, China.
  6. Mingtian Zhong: Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
  7. Xin Wang: Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China.
  8. Wenjun Sun: Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China.
  9. Yuan Yao: ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
  10. Quanjiang Ji: School of Physical Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China. ORCID
  11. Xiaolong Wang: Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China. ORCID
  12. Jianghuai Liu: State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, 210061, Nanjing, China. liujianghuai@nju.edu.cn. ORCID
  13. Shiqiang Zhu: Zhejiang Lab, Hangzhou, Zhejiang, 311121, China. zhusq@zhejianglab.com.
  14. Xingxu Huang: Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China. huangxx@shanghaitech.edu.cn. ORCID

Abstract

The applicability of nuclease-based form of prime editor (PEn) has been hindered by its complexed editing outcomes. A chemical inhibitor against DNA-PK, which mediates the nonhomologous end joining (NHEJ) pathway, was recently shown to promote precise insertions by PEn. Nevertheless, the intrinsic issues of specificity and toxicity for such a chemical approach necessitate development of alternative strategies. Here, we find that co-introduction of PEn and a NHEJ-restraining, 53BP1-inhibitory ubiquitin variant potently drives precise edits via mitigation of unintended edits, framing a high-activity editing platform (uPEn) apparently complementing the canonical PE. Further developments involve exploring the effective configuration of a homologous region-containing pegRNA (HR-pegRNA). Overall, uPEn can empower high-efficiency installation of insertions (38%), deletions (43%) and replacements (52%) in HEK293T cells. When compared with PE3/5max, uPEn demonstrates superior activities for typically refractory base substitutions, and for small-block edits. Collectively, this work establishes a highly efficient PE platform with broad application potential.

References

  1. Annu Rev Biochem. 2010;79:181-211 [PMID: 20192759]
  2. DNA Repair (Amst). 2008 Oct 1;7(10):1765-71 [PMID: 18675941]
  3. Nat Rev Genet. 2022 Nov 7;: [PMID: 36344749]
  4. Cell Res. 2018 Aug;28(8):855-861 [PMID: 29875396]
  5. Nat Biotechnol. 2018 Jan;36(1):95-102 [PMID: 29176614]
  6. Nat Biotechnol. 2015 May;33(5):543-8 [PMID: 25803306]
  7. Cell. 2021 Oct 28;184(22):5635-5652.e29 [PMID: 34653350]
  8. Nat Cell Biol. 2019 Dec;21(12):1468-1478 [PMID: 31792376]
  9. Nat Biotechnol. 2022 Feb;40(2):227-234 [PMID: 34650270]
  10. Blood. 2021 Dec 30;138(26):2768-2780 [PMID: 34086870]
  11. Genome Med. 2015 Aug 27;7:93 [PMID: 26307031]
  12. Nature. 2019 Dec;576(7785):149-157 [PMID: 31634902]
  13. Bioorg Med Chem Lett. 2004 Dec 20;14(24):6083-7 [PMID: 15546735]
  14. Nat Biotechnol. 2022 Aug 25;: [PMID: 36008610]
  15. Nat Biotechnol. 2019 Mar;37(3):224-226 [PMID: 30809026]
  16. Trends Cell Biol. 2014 Feb;24(2):108-17 [PMID: 24094932]
  17. Nucleic Acids Res. 2020 Oct 9;48(18):10576-10589 [PMID: 32941652]
  18. Nat Biotechnol. 2015 Feb;33(2):187-197 [PMID: 25513782]
  19. Nat Biotechnol. 2021 Oct;39(10):1292-1299 [PMID: 33859403]
  20. Nature. 2020 Feb;578(7794):229-236 [PMID: 32051598]
  21. Bioinformatics. 2014 May 15;30(10):1473-5 [PMID: 24463181]
  22. Nucleic Acids Res. 2016 Jan 4;44(D1):D862-8 [PMID: 26582918]
  23. Nat Struct Mol Biol. 2011 Dec 18;19(1):72-8 [PMID: 22179786]
  24. Nat Biotechnol. 2020 Jul;38(7):824-844 [PMID: 32572269]
  25. Mol Cell. 2022 Jan 20;82(2):348-388 [PMID: 35063100]
  26. Nat Commun. 2022 Mar 24;13(1):1240 [PMID: 35332138]
  27. Nat Commun. 2019 Jun 28;10(1):2866 [PMID: 31253785]
  28. Nucleic Acids Res. 2021 Oct 11;49(18):10785-10795 [PMID: 34534334]
  29. Nat Biomed Eng. 2017 Nov;1(11):878-888 [PMID: 31015609]
  30. Nature. 2015 Oct 1;526(7571):68-74 [PMID: 26432245]
  31. Nat Biotechnol. 2015 May;33(5):538-42 [PMID: 25798939]
  32. Blood. 2021 May 13;137(19):2598-2608 [PMID: 33623984]
  33. Cell Discov. 2020 Apr 28;6:27 [PMID: 32351707]
  34. Nat Commun. 2021 Sep 23;12(1):5617 [PMID: 34556671]
  35. Signal Transduct Target Ther. 2022 Apr 20;7(1):108 [PMID: 35440051]
  36. Cell. 2020 Apr 2;181(1):136-150 [PMID: 32243786]
  37. Nat Rev Genet. 2013 Feb;14(2):125-38 [PMID: 23329113]
  38. Annu Rev Genet. 2013;47:433-55 [PMID: 24050180]

MeSH Term

Humans
Gene Editing
DNA Breaks, Double-Stranded
HEK293 Cells
DNA End-Joining Repair
CRISPR-Cas Systems

Word Cloud

Created with Highcharts 10.0.0PEneditsuPEnprimeeditoreditingchemicalpreciseinsertionsplatformPEapplicabilitynuclease-basedformhinderedcomplexedoutcomesinhibitorDNA-PKmediatesnonhomologousendjoiningNHEJpathwayrecentlyshownpromoteNeverthelessintrinsicissuesspecificitytoxicityapproachnecessitatedevelopmentalternativestrategiesfindco-introductionNHEJ-restraining53BP1-inhibitoryubiquitinvariantpotentlydrivesviamitigationunintendedframinghigh-activityapparentlycomplementingcanonicaldevelopmentsinvolveexploringeffectiveconfigurationhomologousregion-containingpegRNAHR-pegRNAOverallcanempowerhigh-efficiencyinstallation38%deletions43%replacements52%HEK293TcellscomparedPE3/5maxdemonstratessuperioractivitiestypicallyrefractorybasesubstitutionssmall-blockCollectivelyworkestablisheshighlyefficientbroadapplicationpotentialDevelopmentversatilenucleaseupgradedprecision

Similar Articles

Cited By