Development and validation of a prognostic model and gene co-expression networks for breast carcinoma based on scRNA-seq and bulk-seq data.

Zhaohui Ruan, Dongmei Chi, Qianyu Wang, Jiaxin Jiang, Qi Quan, Jinxin Bei, Roujun Peng
Author Information
  1. Zhaohui Ruan: VIP Section Department, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
  2. Dongmei Chi: Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
  3. Qianyu Wang: VIP Section Department, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
  4. Jiaxin Jiang: VIP Section Department, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
  5. Qi Quan: VIP Section Department, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
  6. Jinxin Bei: Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
  7. Roujun Peng: VIP Section Department, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.

Abstract

Background: Breast carcinoma is the most common malignancy among women worldwide. It is characterized by a complex tumor microenvironment (TME), in which there is an intricate combination of different types of cells, which can cause confusion when screening tumor-cell-related signatures or constructing a gene co-expression network. The recent emergence of single-cell RNA sequencing (scRNA-seq) is an effective method for studying the changing omics of cells in complex TMEs.
Methods: The Dysregulated genes of malignant epithelial cells was screened by performing a comprehensive analysis of the public scRNA-seq data of 58 samples. Co-expression and Gene Set Enrichment Analysis (GSEA) analysis were performed based on scRNA-seq data of malignant cells to illustrate the potential function of these dysregulated genes. Iterative LASSO-Cox was used to perform a second-round screening among these dysregulated genes for constructing risk group. Finally, a breast cancer prognosis prediction model was constructed based on risk grouping and other clinical characteristics.
Results: Our results indicated a transcriptional signature of 1,262 genes for malignant breast cancer epithelial cells. To estimate the function of these genes in breast cancer, we also constructed a co-expression network of these dysregulated genes at single-cell resolution, and further validated the results using more than 300 published transcriptomics datasets and 31 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screening datasets. Moreover, we developed a reliable predictive model based on the scRNA-seq and bulk-seq datasets.
Conclusions: Our findings provide insights into the transcriptomics and gene co-expression networks during breast carcinoma progression and suggest potential candidate biomarkers and therapeutic targets for the treatment of breast carcinoma. Our results are available via a web app (https://prognosticpredictor.shinyapps.io/GCNBC/).

Keywords

References

  1. Nat Rev Dis Primers. 2019 Sep 23;5(1):66 [PMID: 31548545]
  2. Sci Rep. 2021 Aug 18;11(1):16787 [PMID: 34408238]
  3. Breast Cancer. 2021 Jul;28(4):859-873 [PMID: 33569740]
  4. Cell. 2018 Aug 23;174(5):1293-1308.e36 [PMID: 29961579]
  5. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  6. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  7. Nat Biotechnol. 2020 Jun;38(6):675-678 [PMID: 32444850]
  8. Gigascience. 2020 Dec 26;9(12): [PMID: 33367645]
  9. Biostatistics. 2017 Apr 1;18(2):275-294 [PMID: 27756721]
  10. Oncol Lett. 2019 Nov;18(5):4449-4456 [PMID: 31611954]
  11. Cell Death Dis. 2020 Jul 24;11(7):579 [PMID: 32709848]
  12. J Cancer Res Clin Oncol. 2013 Dec;139(12):2125-32 [PMID: 24146193]
  13. Int Immunopharmacol. 2022 Feb;103:108430 [PMID: 34923424]
  14. Breast Cancer Res Treat. 2022 Apr;192(3):529-539 [PMID: 35124721]
  15. J Exp Med. 2021 Sep 6;218(9): [PMID: 34297039]
  16. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  17. DNA Cell Biol. 2020 Jun;39(6):975-991 [PMID: 32397815]
  18. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  19. Clin Cancer Res. 2012 Nov 1;18(21):6001-10 [PMID: 22991413]
  20. Int J Oral Sci. 2021 Nov 15;13(1):36 [PMID: 34782601]
  21. Science. 2014 Jan 3;343(6166):84-87 [PMID: 24336571]
  22. Front Genet. 2022 Jan 27;13:833797 [PMID: 35154287]
  23. Cancer Res. 2006 Apr 15;66(8):4065-78 [PMID: 16618726]
  24. Genome Res. 2015 Oct;25(10):1491-8 [PMID: 26430159]
  25. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  26. EMBO J. 2021 Jun 1;40(11):e107333 [PMID: 33950524]
  27. J Clin Invest. 2021 Jan 4;131(1): [PMID: 33393509]
  28. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  29. PLoS One. 2015 Nov 11;10(11):e0141947 [PMID: 26559818]
  30. Nat Commun. 2017 May 05;8:15081 [PMID: 28474673]
  31. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  32. Stem Cells. 2012 Dec;30(12):2810-9 [PMID: 23034983]
  33. Cancer Res Treat. 2020 Jan;52(1):218-245 [PMID: 31291711]
  34. Cell Syst. 2019 Apr 24;8(4):281-291.e9 [PMID: 30954476]
  35. Aging (Albany NY). 2020 Jul 27;12(14):14754-14774 [PMID: 32716908]
  36. Front Mol Biosci. 2022 Apr 11;9:807497 [PMID: 35480896]
  37. Commun Biol. 2019 Aug 9;2:306 [PMID: 31428694]
  38. Nat Commun. 2020 Feb 21;11(1):1000 [PMID: 32081859]
  39. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  40. EMBO J. 2020 Oct 1;39(19):e104063 [PMID: 32790115]
  41. Mol Biol Rep. 2010 Dec;37(8):3819-25 [PMID: 20213509]
  42. Clin Genitourin Cancer. 2017 Aug;15(4):e551-e562 [PMID: 28063846]
  43. Dis Markers. 2019 Nov 21;2019:2183057 [PMID: 31871499]
  44. Nat Commun. 2017 Nov 21;8(1):1636 [PMID: 29158506]
  45. Protein Sci. 2021 Jan;30(1):187-200 [PMID: 33070389]
  46. Nat Methods. 2015 Mar;12(3):211-4, 3 p following 214 [PMID: 25581801]
  47. Cell. 2015 May 21;161(5):1187-1201 [PMID: 26000487]
  48. Front Oncol. 2022 Mar 11;12:862313 [PMID: 35359404]
  49. Breast Cancer Res Treat. 2021 Nov;190(2):203-211 [PMID: 34519905]
  50. Hum Mol Genet. 2022 May 19;31(10):1705-1719 [PMID: 34957503]

Word Cloud

Created with Highcharts 10.0.0genesbreastcellsco-expressionscRNA-seqcarcinomagenebasedcancermodelscreeningsingle-cellmalignantdatadysregulatedresultsdatasetsnetworksBreastamongcomplexconstructingnetworkRNAsequencingepithelialanalysispotentialfunctionriskconstructedtranscriptomicsbulk-seqprognosticBackground:commonmalignancywomenworldwidecharacterizedtumormicroenvironmentTMEintricatecombinationdifferenttypescancauseconfusiontumor-cell-relatedsignaturesrecentemergenceeffectivemethodstudyingchangingomicsTMEsMethods:Dysregulatedscreenedperformingcomprehensivepublic58samplesCo-expressionGeneSetEnrichmentAnalysisGSEAperformedillustrateIterativeLASSO-Coxusedperformsecond-roundgroupFinallyprognosispredictiongroupingclinicalcharacteristicsResults:indicatedtranscriptionalsignature1262estimatealsoresolutionvalidatedusing300published31ClusteredRegularlyInterspacedShortPalindromicRepeatsCRISPRMoreoverdevelopedreliablepredictiveConclusions:findingsprovideinsightsprogressionsuggestcandidatebiomarkerstherapeutictargetstreatmentavailableviawebapphttps://prognosticpredictorshinyappsio/GCNBC/DevelopmentvalidationiterativeleastabsoluteshrinkageselectionoperatorLASSO

Similar Articles

Cited By (3)