Genome-Wide Identification and Analysis of the Heat-Shock Protein Gene in and Expression Pattern Analysis under Heat Shock.

Xu Zhao, Kaiyong Yin, Rencai Feng, Renyun Miao, Junbin Lin, Luping Cao, Yanqing Ni, Wensheng Li, Qin Zhang
Author Information
  1. Xu Zhao: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China.
  2. Kaiyong Yin: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China.
  3. Rencai Feng: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China.
  4. Renyun Miao: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China.
  5. Junbin Lin: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China.
  6. Luping Cao: College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
  7. Yanqing Ni: College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
  8. Wensheng Li: College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
  9. Qin Zhang: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China.

Abstract

(), one of the most popular edible mushrooms in China, is adversely affected by high temperature. Heat shock proteins (HSPs) play a crucial role in regulating the defense responses against the abiotic stresses in . Some HSPs in have been described previously, but a genome-wide analysis of these proteins is still lacking. Here, the HSP genes across the entire genome of the mushroom were identified. The 34 genes were subsequently classified into six subfamilies according to their molecular weights and the phylogenetic analysis. Sequence analysis showed that LeHSP proteins from the same subfamily have conserved domains and one to five similar motifs. Except for Chr 5 and 9, 34 genes were distributed on the other eight chromosomes. Three pairs of paralogs were identified because of sequence alignment and were confirmed as arising from segmental duplication. In promoters, different numbers of heat shock elements (HSEs) were predicted. The expression profiles of in 18N44 and 18 suggested that the thermo-tolerance of strain 18N44 might be related to high levels of transcript in response to heat stress. The quantitative real-time PCR (qRT-PCR) analysis of the 16 genes in strains Le015 and Le027 verified their stress-inducible expression patterns under heat stress. Therefore, these comprehensive findings provide useful in-depth information on the evolution and function of and lay a theoretical foundation in breeding thermotolerant varieties.

Keywords

References

  1. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 [PMID: 30357350]
  2. Comp Biochem Physiol Part D Genomics Proteomics. 2020 Dec;36:100749 [PMID: 33065474]
  3. Shock. 1999 Jan;11(1):1-12 [PMID: 9921710]
  4. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  5. Sci Rep. 2020 May 12;10(1):7858 [PMID: 32398647]
  6. Cell Stress Chaperones. 2015 May;20(3):451-60 [PMID: 25624002]
  7. Curr Opin Plant Biol. 2007 Jun;10(3):310-6 [PMID: 17482504]
  8. Plant Physiol. 2001 Jun;126(2):789-800 [PMID: 11402207]
  9. Front Plant Sci. 2016 Aug 17;7:1215 [PMID: 27582749]
  10. Mol Cell Biol. 1998 Nov;18(11):6340-52 [PMID: 9774650]
  11. PLoS One. 2013 Jul 25;8(7):e69810 [PMID: 23936107]
  12. Front Plant Sci. 2015 Oct 01;6:806 [PMID: 26483820]
  13. Nat Methods. 2013 Jan;10(1):71-3 [PMID: 23160280]
  14. Front Physiol. 2020 Jan 14;10:1593 [PMID: 31992993]
  15. Arch Microbiol. 2022 Apr 4;204(5):240 [PMID: 35377020]
  16. BMC Genomics. 2014 May 07;15:344 [PMID: 24884676]
  17. Biomed Res Int. 2018 Jun 11;2018:1670328 [PMID: 29992134]
  18. J Cell Biochem. 2016 Jan;117(1):230-8 [PMID: 26104915]
  19. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  20. Plant Sci. 2009 Apr;176(4):583-90 [PMID: 26493149]
  21. Int J Med Mushrooms. 2019;21(9):909-919 [PMID: 32450029]
  22. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  23. Sci Rep. 2016 Sep 02;6:32641 [PMID: 27586959]
  24. Thorax. 2002 Sep;57(9):765-70 [PMID: 12200519]
  25. Front Microbiol. 2020 Apr 17;11:707 [PMID: 32362887]
  26. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73 [PMID: 16845028]
  27. J Adv Res. 2021 Sep 28;38:91-106 [PMID: 35572413]
  28. Sci Rep. 2016 Jul 12;6:29236 [PMID: 27405087]
  29. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  30. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  31. Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576 [PMID: 34536103]
  32. Science. 1993 Mar 5;259(5100):1409-10 [PMID: 8451637]
  33. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  34. Hum Mol Genet. 2009 Aug 15;18(16):2957-62 [PMID: 19443486]
  35. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  36. J Biol Chem. 2014 Oct 31;289(44):30459-30469 [PMID: 25204655]
  37. Int J Biol Macromol. 2021 Nov 1;190:827-836 [PMID: 34492251]
  38. Cell Stress Chaperones. 2001 Jul;6(3):225-37 [PMID: 11599564]
  39. Cell Stress Chaperones. 2021 Mar;26(2):341-353 [PMID: 33184780]
  40. Int J Genomics. 2020 Jun 19;2020:3126592 [PMID: 32656260]
  41. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  42. Front Plant Sci. 2015 Sep 25;6:773 [PMID: 26442082]

Grants

  1. No.2022JDRC0034/Scientific and Technological Innovation Talents of Sichuan Province
  2. No.20JR5RA064/Gansu Provincial Youth Science and Technology Fund Program
  3. No.S2022007/Central Public-interest Scientific Institution Basal Research Fund
  4. No.NASC2021KR06/Local Financial Funds of National Agricultural Science and Technology Center, Chengdu

Word Cloud

Created with Highcharts 10.0.0analysisheatgenesshockproteinsstressonehighHeatHSPsgenomeidentified34expression18N44AnalysispopularediblemushroomsChinaadverselyaffectedtemperatureplaycrucialroleregulatingdefenseresponsesabioticstressesdescribedpreviouslygenome-widestilllackingHSPacrossentiremushroomsubsequentlyclassifiedsixsubfamiliesaccordingmolecularweightsphylogeneticSequenceshowedLeHSPsubfamilyconserveddomainsfivesimilarmotifsExceptChr59distributedeightchromosomesThreepairsparalogssequencealignmentconfirmedarisingsegmentalduplicationpromotersdifferentnumberselementsHSEspredictedprofiles18suggestedthermo-tolerancestrainmightrelatedlevelstranscriptresponsequantitativereal-timePCRqRT-PCR16strainsLe015Le027verifiedstress-induciblepatternsThereforecomprehensivefindingsprovideusefulin-depthinformationevolutionfunctionlaytheoreticalfoundationbreedingthermotolerantvarietiesGenome-WideIdentificationHeat-ShockProteinGeneExpressionPatternShockLedodesRT-qPCRprotein

Similar Articles

Cited By (2)