Pepper-Mediated Green Synthesis of Selenium and Tellurium Nanoparticles with Antibacterial and Anticancer Potential.

Veer Shah, David Medina-Cruz, Ada Vernet-Crua, Linh B Truong, Eduardo Sotelo, Ebrahim Mostafavi, María Ujué González, José Miguel García-Martín, Jorge L Cholula-Díaz, Thomas J Webster
Author Information
  1. Veer Shah: Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA. ORCID
  2. David Medina-Cruz: Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
  3. Ada Vernet-Crua: Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
  4. Linh B Truong: Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
  5. Eduardo Sotelo: School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico.
  6. Ebrahim Mostafavi: Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. ORCID
  7. María Ujué González: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain. ORCID
  8. José Miguel García-Martín: Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain. ORCID
  9. Jorge L Cholula-Díaz: School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico. ORCID
  10. Thomas J Webster: School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China. ORCID

Abstract

The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications.

Keywords

References

  1. Nanomedicine. 2015 Apr;11(3):731-9 [PMID: 25546848]
  2. Curr Pharm Des. 2010 Jun;16(16):1882-92 [PMID: 20222866]
  3. Int J Nanomedicine. 2019 May 03;14:3155-3176 [PMID: 31118629]
  4. Environ Toxicol Pharmacol. 2013 Nov;36(3):997-1014 [PMID: 24095717]
  5. ACS Omega. 2020 Feb 05;5(6):2660-2669 [PMID: 32095689]
  6. Biomolecules. 2020 Oct 30;10(11): [PMID: 33143173]
  7. ACS Appl Mater Interfaces. 2021 Apr 7;13(13):14885-14893 [PMID: 33754695]
  8. J Biomed Mater Res A. 2018 May;106(5):1400-1412 [PMID: 29356322]
  9. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):844-851 [PMID: 30879351]
  10. Front Bioeng Biotechnol. 2021 Jan 25;8:624621 [PMID: 33569376]
  11. Genes Dev. 2004 Dec 1;18(23):2905-15 [PMID: 15545623]
  12. Green Chem. 2019 May 21;21(8):1982-1988 [PMID: 31156349]
  13. PLoS One. 2007 Feb 14;2(2):e211 [PMID: 17299591]
  14. Acc Chem Res. 2019 Jun 18;52(6):1632-1642 [PMID: 31181913]
  15. Small. 2013 Apr 8;9(7):970-82 [PMID: 23296910]
  16. Front Microbiol. 2015 Jun 16;6:584 [PMID: 26136728]
  17. Molecules. 2021 Jun 12;26(12): [PMID: 34204666]
  18. Adv Healthc Mater. 2021 Aug;10(16):e2100598 [PMID: 34121366]
  19. Nanoscale. 2019 Aug 8;11(31):14937-14951 [PMID: 31363721]
  20. Free Radic Biol Med. 2018 Oct;126:55-66 [PMID: 30056082]
  21. Chem Biol Interact. 2017 Aug 1;273:219-227 [PMID: 28647323]
  22. ACS Nano. 2017 Oct 24;11(10):10012-10024 [PMID: 28945969]
  23. J Trace Elem Med Biol. 2014 Jan;28(1):75-9 [PMID: 24074651]
  24. Res Pharm Sci. 2014 Nov-Dec;9(6):385-406 [PMID: 26339255]
  25. Adv Colloid Interface Sci. 2019 Oct;272:102017 [PMID: 31437570]
  26. IET Nanobiotechnol. 2015 Oct;9(5):300-5 [PMID: 26435284]
  27. Bioprocess Biosyst Eng. 2015 Sep;38(9):1723-30 [PMID: 25972036]
  28. Molecules. 2022 Mar 04;27(5): [PMID: 35268794]
  29. Curr Mol Med. 2010 Oct;10(7):640-52 [PMID: 20712588]
  30. Free Radic Biol Med. 1994 Jul;17(1):45-64 [PMID: 7959166]
  31. Inorg Chem. 2012 Aug 20;51(16):8956-63 [PMID: 22873404]
  32. Int J Mol Sci. 2021 Jan 20;22(3): [PMID: 33498184]
  33. Biochim Biophys Acta. 2016 Dec;1863(12):2977-2992 [PMID: 27646922]
  34. Biotechnol Adv. 2013 Mar-Apr;31(2):346-56 [PMID: 23318667]
  35. Nanomaterials (Basel). 2021 Feb 18;11(2): [PMID: 33670538]
  36. Drug Res (Stuttg). 2017 Feb;67(2):70-76 [PMID: 27824432]
  37. Pharm Dev Technol. 2021 Jun;26(5):539-548 [PMID: 33685334]

Grants

  1. LINKB20024/Tecnológico de Monterrey
  2. LINKB20024/Spanish National Research Council
  3. SpaceTec, S2018/NMT-4291 TEC2SPACE/CM
  4. CSIC13-4E-1794/Ministry of Economy, Industry and Competitiveness
  5. FEDER, FSE/European Union

Word Cloud

Created with Highcharts 10.0.0nanoparticlesanticancerantimicrobialpropertiesseleniumtestedeffectbiomedicalapplicationsusingsynthesistelluriumstudyproducebiocompatibilityfeaturesgreenenvironmentallyfriendlynanomaterialscost-effectivepepperscancerproducedlackedantibacterialproductionnamelysignificantlyhamperedtraditionalphysicochemicalapproachesoftennanostructurespoorrequiringpost-synthesisfunctionalizationimplementrequirealternativenanotechnologygainingattentionlastdecadeslivingorganismsbiomoleculesderivedmainrawmaterialsready-to-be-usedarticlebuildinguponpreviousknowledgedesignedimplementedextractsfreshjalapeñohabanerocharacterizationisolatesantibiotic-resistantbacterialstrainsskincelllinesrespectivelynanosystemsviafasteco-friendlymethodshowingdifferentprofileselementsconcentrationsmadesignificantevenlowestconcentrationeffectscorrelatedcytocompatibilitybiocompatibledose-dependenttellurium-basedexertingpowerfulanti-cancerdemonstratedsuitablemechanismactionkillingbacteriacellsinvolvingreactiveoxygenspeciesROSgenerationsummaryintroducesnewnanomedicineapproachcreatenovelattractivenumerousPepper-MediatedGreenSynthesisSeleniumTelluriumNanoparticlesAntibacterialAnticancerPotentialbiomedicinechalcogens

Similar Articles

Cited By