Cerebellar granule neurons induce Cyclin D1 before the onset of motor symptoms in Huntington's disease mice.

Susanne Bauer, Chwen-Yu Chen, Maria Jonson, Lech Kaczmarczyk, Srivathsa Subramanya Magadi, Walker S Jackson
Author Information
  1. Susanne Bauer: Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden.
  2. Chwen-Yu Chen: Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden.
  3. Maria Jonson: Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden.
  4. Lech Kaczmarczyk: Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden.
  5. Srivathsa Subramanya Magadi: Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden.
  6. Walker S Jackson: Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden. walker.jackson@liu.se. ORCID

Abstract

Although Huntington's disease (HD) is classically defined by the selective vulnerability of striatal projection neurons, there is increasing evidence that cerebellar degeneration modulates clinical symptoms. However, little is known about cell type-specific responses of cerebellar neurons in HD. To dissect early disease mechanisms in the cerebellum and cerebrum, we analyzed translatomes of neuronal cell types from both regions in a new HD mouse model. For this, HdhQ200 knock-in mice were backcrossed with the calm 129S4 strain, to constrain experimental noise caused by variable hyperactivity of mice in a C57BL/6 background. Behavioral and neuropathological characterization showed that these S4-HdhQ200 mice had very mild behavioral abnormalities starting around 12 months of age that remained mild up to 18 months. By 9 months, we observed abundant Huntingtin-positive neuronal intranuclear inclusions (NIIs) in the striatum and cerebellum. The translatome analysis of GABAergic cells of the cerebrum further confirmed changes typical of HD-induced striatal pathology. Surprisingly, we observed the strongest response with 626 differentially expressed genes in glutamatergic neurons of the cerebellum, a population consisting primarily of granule cells, commonly considered disease resistant. Our findings suggest vesicular fusion and exocytosis, as well as differentiation-related pathways are affected in these neurons. Furthermore, increased expression of cyclin D1 (Ccnd1) in the granular layer and upregulated expression of polycomb group complex protein genes and cell cycle regulators Cbx2, Cbx4 and Cbx8 point to a putative role of aberrant cell cycle regulation in cerebellar granule cells in early disease.

References

  1. Elife. 2018 Dec 03;7: [PMID: 30507379]
  2. Bioinformatics. 2010 Oct 1;26(19):2438-44 [PMID: 20709693]
  3. Cell Death Differ. 2018 Sep;25(9):1598-1611 [PMID: 29459770]
  4. J Neurosci. 2021 Jun 23;41(25):5534-5552 [PMID: 34011527]
  5. Hum Mol Genet. 2006 Mar 15;15(6):965-77 [PMID: 16467349]
  6. Neuron. 2016 Mar 2;89(5):910-26 [PMID: 26938440]
  7. Hum Mol Genet. 2010 Oct 1;19(19):3702-20 [PMID: 20616151]
  8. Nat Neurosci. 2016 Oct;19(10):1321-30 [PMID: 27526204]
  9. Hum Mol Genet. 2011 Nov 1;20(21):4258-67 [PMID: 21840924]
  10. PLoS Biol. 2005 May;3(5):e159 [PMID: 15836427]
  11. Cerebellum. 2021 Dec;20(6):942-945 [PMID: 33723707]
  12. Nucleic Acids Res. 2013 Apr;41(8):4378-91 [PMID: 23444143]
  13. Cerebellum. 2021 Apr;20(2):254-265 [PMID: 33029762]
  14. Sci Rep. 2021 Mar 8;11(1):5412 [PMID: 33686166]
  15. PLoS Biol. 2019 Aug 8;17(8):e3000374 [PMID: 31393866]
  16. Swiss Med Wkly. 2015 Oct 29;145:w14186 [PMID: 26513700]
  17. PLoS One. 2015 Dec 04;10(12):e0144398 [PMID: 26636336]
  18. Nature. 2021 Oct;598(7879):214-219 [PMID: 34616064]
  19. Nat Neurosci. 2016 Apr;19(4):623-33 [PMID: 26900923]
  20. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5733-7 [PMID: 2456581]
  21. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1291-6 [PMID: 18216249]
  22. Behav Brain Res. 2009 Jun 8;200(1):128-33 [PMID: 19373978]
  23. Cell Death Differ. 2015 Nov;22(11):1775-84 [PMID: 25822340]
  24. J Neurosci. 2020 Jan 29;40(5):958-973 [PMID: 31831521]
  25. Sci Rep. 2019 Dec 10;9(1):18696 [PMID: 31822756]
  26. Exp Neurol. 1984 Jul;85(1):78-86 [PMID: 6203775]
  27. J Neurosci. 2014 Oct 22;34(43):14375-87 [PMID: 25339750]
  28. Bone. 2021 Feb;143:115659 [PMID: 32979540]
  29. PLoS Pathog. 2022 Aug 12;18(8):e1010747 [PMID: 35960762]
  30. Neuron. 2011 Jul 14;71(1):142-54 [PMID: 21745644]
  31. Nucleic Acids Res. 2012 Jul;40(12):5497-510 [PMID: 22402492]
  32. Hum Mol Genet. 2015 May 1;24(9):2442-57 [PMID: 25574027]
  33. Neuron. 2020 Sep 9;107(5):891-908.e8 [PMID: 32681824]
  34. Front Genet. 2021 Oct 15;12:751033 [PMID: 34721539]
  35. J Huntingtons Dis. 2020;9(3):217-229 [PMID: 32925079]
  36. Life Sci Alliance. 2022 Oct 03;5(11): [PMID: 36192034]
  37. Neurology. 2020 May 5;94(18):e1908-e1915 [PMID: 32265233]
  38. Mol Cell Biol. 2011 May;31(10):2100-10 [PMID: 21402785]
  39. Front Cell Dev Biol. 2021 Jul 01;9:642773 [PMID: 34277598]
  40. BMC Med Genomics. 2014 Oct 30;7:60 [PMID: 25358814]
  41. Front Hum Neurosci. 2017 Jan 30;11:17 [PMID: 28194101]
  42. J Neurochem. 2001 Jan;76(1):11-20 [PMID: 11145973]
  43. Hum Mol Genet. 2010 Feb 15;19(4):573-83 [PMID: 19933700]
  44. Aging Dis. 2020 Jul 23;11(4):946-966 [PMID: 32765956]
  45. Neurobiol Dis. 2022 Jan;162:105581 [PMID: 34871739]
  46. Nat Immunol. 2018 Jun;19(6):636-644 [PMID: 29777220]
  47. Hum Mol Genet. 2001 Jan 15;10(2):137-44 [PMID: 11152661]
  48. Brain Pathol. 2013 Mar;23(2):165-77 [PMID: 22925167]
  49. Elife. 2021 Jun 28;10: [PMID: 34180393]
  50. Ann Neurol. 2019 Mar;85(3):396-405 [PMID: 30635944]
  51. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13939-44 [PMID: 19666516]
  52. Cell Rep. 2018 Jul 31;24(5):1231-1242 [PMID: 30067978]
  53. Int J Dev Neurosci. 2008 Nov;26(7):665-71 [PMID: 18768156]
  54. Exp Neurol. 2013 Feb;240:96-102 [PMID: 23195593]
  55. Int J Mol Sci. 2021 Feb 12;22(4): [PMID: 33673348]

MeSH Term

Mice
Animals
Huntington Disease
Cyclin D1
Mice, Inbred C57BL
Interneurons
Neurons
Corpus Striatum
Disease Models, Animal
Mice, Transgenic
Huntingtin Protein

Chemicals

Cyclin D1
Huntingtin Protein

Word Cloud

Created with Highcharts 10.0.0diseaseneuronscellmiceHDcerebellarcerebellumcellsgranuleHuntington'sstriatalsymptomsearlycerebrumneuronalmildobservedgenesexpressionD1cycleAlthoughclassicallydefinedselectivevulnerabilityprojectionincreasingevidencedegenerationmodulatesclinicalHoweverlittleknowntype-specificresponsesdissectmechanismsanalyzedtranslatomestypesregionsnewmousemodelHdhQ200knock-inbackcrossedcalm129S4strainconstrainexperimentalnoisecausedvariablehyperactivityC57BL/6backgroundBehavioralneuropathologicalcharacterizationshowedS4-HdhQ200behavioralabnormalitiesstartingaround12 monthsageremained18 months9 monthsabundantHuntingtin-positiveintranuclearinclusionsNIIsstriatumtranslatomeanalysisGABAergicconfirmedchangestypicalHD-inducedpathologySurprisinglystrongestresponse626differentiallyexpressedglutamatergicpopulationconsistingprimarilycommonlyconsideredresistantfindingssuggestvesicularfusionexocytosiswelldifferentiation-relatedpathwaysaffectedFurthermoreincreasedcyclinCcnd1granularlayerupregulatedpolycombgroupcomplexproteinregulatorsCbx2Cbx4Cbx8pointputativeroleaberrantregulationCerebellarinduceCyclinonsetmotor

Similar Articles

Cited By