A Computer Simulation of SARS-CoV-2 Mutation Spectra for Empirical Data Characterization and Analysis.

Ming Xiao, Fubo Ma, Jun Yu, Jianghang Xie, Qiaozhen Zhang, Peng Liu, Fei Yu, Yuming Jiang, Le Zhang
Author Information
  1. Ming Xiao: College of Computer Science, Sichuan University, Chengdu 610065, China.
  2. Fubo Ma: West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China.
  3. Jun Yu: CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China.
  4. Jianghang Xie: College of Computer Science, Sichuan University, Chengdu 610065, China.
  5. Qiaozhen Zhang: College of Computer Science, Sichuan University, Chengdu 610065, China.
  6. Peng Liu: National Wildlife Health Center, Hebei Agricultural University, Baoding 071001, China.
  7. Fei Yu: Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China. ORCID
  8. Yuming Jiang: College of Computer Science, Sichuan University, Chengdu 610065, China.
  9. Le Zhang: College of Computer Science, Sichuan University, Chengdu 610065, China. ORCID

Abstract

It is very important to compute the mutation spectra, and simulate the intra-host mutation processes by sequencing data, which is not only for the understanding of SARS-CoV-2 genetic mechanism, but also for epidemic prediction, vaccine, and drug design. However, the current intra-host mutation analysis algorithms are not only inaccurate, but also the simulation methods are unable to quickly and precisely predict new SARS-CoV-2 variants generated from the accumulation of mutations. Therefore, this study proposes a novel accurate strand-specific SARS-CoV-2 intra-host mutation spectra computation method, develops an efficient and fast SARS-CoV-2 intra-host mutation simulation method based on mutation spectra, and establishes an online analysis and visualization platform. Our main results include: (1) There is a significant variability in the SARS-CoV-2 intra-host mutation spectra across different lineages, with the major mutations from G- > A, G- > C, G- > U on the positive-sense strand and C- > U, C- > G, C- > A on the negative-sense strand; (2) our mutation simulation reveals the simulation sequence starts to deviate from the base content percentage of Alpha-CoV/Delta-CoV after approximately 620 mutation steps; (3) 2019-NCSS provides an easy-to-use and visualized online platform for SARS-Cov-2 online analysis and mutation simulation.

Keywords

References

  1. ACS Pharmacol Transl Sci. 2020 Sep 08;3(5):1023-1026 [PMID: 33073197]
  2. Yi Chuan. 2020 Feb 20;42(2):212-221 [PMID: 32102777]
  3. Nucleic Acids Res. 2008 Nov;36(19):6228-36 [PMID: 18829715]
  4. Genome Med. 2021 Feb 22;13(1):30 [PMID: 33618765]
  5. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  6. Euro Surveill. 2017 Mar 30;22(13): [PMID: 28382917]
  7. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  8. PLoS Comput Biol. 2019 May 28;15(5):e1007069 [PMID: 31136576]
  9. Science. 2021 Apr 16;372(6539): [PMID: 33688063]
  10. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  11. Curr Biol. 2020 Aug 3;30(15):R849-R857 [PMID: 32750338]
  12. Signal Transduct Target Ther. 2022 May 10;7(1):156 [PMID: 35538061]
  13. Commun Biol. 2022 Mar 29;5(1):285 [PMID: 35351970]
  14. Brief Bioinform. 2021 Jan 18;22(1):515-525 [PMID: 31982909]
  15. Front Genet. 2021 Oct 26;12:761629 [PMID: 34764986]
  16. Nucleic Acids Res. 2012 Jan;40(Database issue):D54-6 [PMID: 22009675]
  17. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33822878]
  18. Cell. 2019 Dec 12;179(7):1636-1646.e15 [PMID: 31787378]
  19. PLoS Pathog. 2021 Aug 23;17(8):e1009849 [PMID: 34424945]
  20. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):648-663 [PMID: 33581339]
  21. Nat Rev Microbiol. 2021 Mar;19(3):155-170 [PMID: 33116300]
  22. J Korean Med Sci. 2020 Feb 24;35(7):e84 [PMID: 32080990]
  23. Nat Rev Microbiol. 2011 May;9(5):319-29 [PMID: 21478900]
  24. Front Immunol. 2022 May 19;13:853265 [PMID: 35663963]
  25. Exp Mol Med. 2021 Aug;53(8):1229-1237 [PMID: 34453107]
  26. Nat Commun. 2021 Jan 12;12(1):279 [PMID: 33436624]
  27. Proc Natl Acad Sci U S A. 2021 Jun 22;118(25): [PMID: 34083352]
  28. Nat Commun. 2022 Mar 14;13(1):1321 [PMID: 35288552]
  29. Drug Intell Clin Pharm. 1988 Apr;22(4):334-5 [PMID: 3371197]
  30. Virus Evol. 2023 Jan 19;9(1):vead004 [PMID: 36814938]
  31. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):627-639 [PMID: 32739507]
  32. Mol Biol Evol. 2021 Jan 4;38(1):67-83 [PMID: 32687176]
  33. Nat Commun. 2020 Dec 9;11(1):6272 [PMID: 33298935]
  34. ACS Sens. 2021 Aug 27;6(8):3082-3092 [PMID: 34319692]
  35. Front Psychol. 2015 Apr 01;6:341 [PMID: 25883574]
  36. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  37. J Virol. 2018 Jun 29;92(14): [PMID: 29720522]
  38. IEEE/ACM Trans Comput Biol Bioinform. 2020 Nov-Dec;17(6):2148-2154 [PMID: 31443042]
  39. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):175-80 [PMID: 23084772]

Grants

  1. 2021YFF1201200/National Science and Technology Major Project
  2. 2022YFS0048/Sichuan Science and Technology Program
  3. 2020M673221/China Postdoctoral Science Foundation

MeSH Term

Humans
COVID-19
Computer Simulation
SARS-CoV-2
Mutation

Word Cloud

Similar Articles

Cited By