Sphingosylphosphorylcholine (SPC), a Causative Factor of SPC-Induced Vascular Smooth Muscle Cells Contraction, Is Taken Up via Endocytosis.

Natsuko Tsurudome, Yuji Minami, Katsuko Kajiya
Author Information
  1. Natsuko Tsurudome: The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
  2. Yuji Minami: The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
  3. Katsuko Kajiya: The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan. ORCID

Abstract

The reaction field of abnormal vascular contraction induced by sphingosylphosphorylcholine (SPC) and the action point of SPC around the plasma membranes remain unknown. However, we found in a previous study that fisetin prevents SPC-induced vascular smooth muscle cells contraction, while the mechanism remains unknown. Therefore, in this study, we aimed to address the action point of SPC around the plasma membranes and the involvement of fisetin. We focused on microdomains and evaluated their markers flotillin-1 and caveolin-1 and the localization of SPC to investigate their action point. The results showed that microdomains of vascular smooth muscle cells were not involved in SPC-induced contraction. However, we found that after SPC had been affected on the plasma membrane, cells took up SPC via endocytosis. Moreover, SPC remained in the cells and did not undergo transcytosis, and SPC-induced contracting cells produced exosomes. These phenomena were similar to those observed in fisetin-treated cells. Thus, we speculated that, although not involved in the reaction field of SPC-induced contractions, the microdomain induced the endocytosis of SPCs, and fisetin prevented the contractions by directly targeting vascular smooth muscle cells. Notably, this preventive mechanism involves the cellular uptake of SPC via endocytosis.

Keywords

References

  1. Nat Rev Mol Cell Biol. 2010 Oct;11(10):688-99 [PMID: 20861879]
  2. Mol Ther. 2017 Jan 4;25(1):181-191 [PMID: 28129113]
  3. Sci Signal. 2019 May 28;12(583): [PMID: 31138766]
  4. J Cardiovasc Pharmacol. 2022 Jan 05;79(4):456-466 [PMID: 34983908]
  5. Stem Cell Res Ther. 2020 Mar 4;11(1):97 [PMID: 32127037]
  6. Nature. 2014 Jun 5;510(7503):48-57 [PMID: 24899304]
  7. J Cell Biol. 1997 Apr 21;137(2):347-57 [PMID: 9128247]
  8. Biochem J. 1995 Aug 1;309 ( Pt 3):905-12 [PMID: 7639709]
  9. Sensors (Basel). 2015 May 05;15(5):10481-510 [PMID: 25951336]
  10. J Pharmacol Sci. 2022 Aug;149(4):189-197 [PMID: 35717072]
  11. Cerebrovasc Dis. 2008;26(1):30-7 [PMID: 18511869]
  12. J Proteome Res. 2021 Mar 5;20(3):1733-1743 [PMID: 33534581]
  13. Circ Res. 2002 Jul 26;91(2):112-9 [PMID: 12142343]
  14. Nat Cell Biol. 2006 Jan;8(1):46-54 [PMID: 16341206]
  15. Curr Biol. 2018 Apr 23;28(8):R435-R444 [PMID: 29689228]
  16. Annu Rev Biochem. 1998;67:199-225 [PMID: 9759488]
  17. Curr Biol. 2007 Jul 3;17(13):1151-6 [PMID: 17600709]
  18. Prog Lipid Res. 2008 Jan;47(1):62-75 [PMID: 18042469]
  19. Circ Res. 2002 Nov 15;91(10):953-60 [PMID: 12433841]
  20. Neurol Sci. 2018 Jun;39(Suppl 1):33-37 [PMID: 29904830]
  21. J Cereb Blood Flow Metab. 2015 May;35(5):835-42 [PMID: 25605290]
  22. J Cell Biol. 2003 May 26;161(4):673-7 [PMID: 12771123]
  23. Biofactors. 2022 Jan;48(1):56-66 [PMID: 34687255]
  24. J Membr Biol. 2020 Feb;253(1):57-71 [PMID: 31897501]
  25. J Lipid Res. 2020 May;61(5):687-695 [PMID: 32205411]
  26. Compr Physiol. 2020 Mar 12;10(2):491-508 [PMID: 32163197]
  27. Circulation. 2011 Oct 18;124(16):1774-82 [PMID: 22007100]
  28. Sci Rep. 2017 Feb 07;7:36368 [PMID: 28169288]
  29. Anat Rec (Hoboken). 2019 Feb;302(2):186-192 [PMID: 30299599]
  30. FASEB J. 2021 Dec;35(12):e22012 [PMID: 34724245]
  31. J Cell Sci. 2009 Apr 1;122(Pt 7):912-8 [PMID: 19258392]
  32. Nature. 1994 Nov 17;372(6503):231-6 [PMID: 7969467]
  33. Circ Res. 2016 Jan 22;118(2):352-66 [PMID: 26838319]
  34. Int J Nanomedicine. 2020 Sep 22;15:6917-6934 [PMID: 33061359]
  35. Circ Res. 2006 Aug 4;99(3):299-306 [PMID: 16825579]
  36. FEBS Lett. 2007 Nov 13;581(27):5227-33 [PMID: 17950286]
  37. Molecules. 2010 Aug 20;15(8):5742-55 [PMID: 20729797]
  38. Acta Pharmacol Sin. 2018 Dec;39(12):1830-1836 [PMID: 30050085]

MeSH Term

Muscle, Smooth, Vascular
rho-Associated Kinases
Muscle Contraction
Endocytosis

Chemicals

rho-Associated Kinases
sphingosine phosphorylcholine

Word Cloud

Created with Highcharts 10.0.0SPCcellsvascularcontractionfisetinSPC-inducedsmoothmuscleendocytosisactionpointplasmamicrodomainsviareactionfieldinducedsphingosylphosphorylcholinearoundmembranesunknownHoweverfoundstudymechanisminvolvedcontractionsabnormalremainpreviouspreventsremainsThereforeaimedaddressinvolvementfocusedevaluatedmarkersflotillin-1caveolin-1localizationinvestigateresultsshowedaffectedmembranetookMoreoverremainedundergotranscytosiscontractingproducedexosomesphenomenasimilarobservedfisetin-treatedThusspeculatedalthoughmicrodomainSPCspreventeddirectlytargetingNotablypreventiveinvolvescellularuptakeSphingosylphosphorylcholineCausativeFactorSPC-InducedVascularSmoothMuscleCellsContractionTakenEndocytosisexocytosis

Similar Articles

Cited By