Toxin-like Peptides from the Bacterial Cultures Derived from Gut Microbiome Infected by SARS-CoV-2-New Data for a Possible Role in the Long COVID Pattern.

Carlo Brogna, Simone Cristoni, Barbara Brogna, Domenico Rocco Bisaccia, Giuliano Marino, Valentina Viduto, Luigi Montano, Marina Piscopo
Author Information
  1. Carlo Brogna: Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy.
  2. Simone Cristoni: ISB-Ion Source & Biotechnologies Srl., 20091 Bresso, Italy.
  3. Barbara Brogna: Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy. ORCID
  4. Domenico Rocco Bisaccia: Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy. ORCID
  5. Giuliano Marino: Marsanconsulting Srl. Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy.
  6. Valentina Viduto: Long COVID-19 Foundation, Garforth, Leeds LS25 1NB, UK.
  7. Luigi Montano: Andrology Unit and Service of Life Style Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy. ORCID
  8. Marina Piscopo: Department of Biology, University of Naples Federico II, 80126 Napoli, Italy. ORCID

Abstract

It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical manifestations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological manifestations. In other autoimmune diseases, such as Parkinson's disease (PD) or Alzheimer's Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After observing the production of these peptides in bacterial cultures, we have performed additional proteomics analyses to better understand their behavior and reported the extended data from our latest in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral aggression can be blocked using an appropriate combination of certain drugs.

Keywords

References

  1. Nat Rev Dis Primers. 2017 Sep 14;3:17063 [PMID: 28905944]
  2. Lancet Neurol. 2020 Feb;19(2):179-194 [PMID: 31753762]
  3. Neurosci Behav Physiol. 2021;51(7):856-866 [PMID: 34751196]
  4. J Mass Spectrom. 2022 Aug;57(8):e4876 [PMID: 35941810]
  5. Neurosci Lett. 2021 Jan 19;743:135567 [PMID: 33352286]
  6. J Mass Spectrom. 2017 Jan;52(1):16-21 [PMID: 27776380]
  7. Sci Rep. 2021 Jun 4;11(1):11886 [PMID: 34088975]
  8. FEBS Lett. 2020 Jun;594(11):1651-1660 [PMID: 32449939]
  9. J Neurol Sci. 2022 Mar 15;434:120162 [PMID: 35121209]
  10. Vaccines (Basel). 2022 Apr 29;10(5): [PMID: 35632464]
  11. Br J Nutr. 2010 Jan;103(2):227-34 [PMID: 19703328]
  12. J Pharmacol Exp Ther. 1996 Sep;278(3):1460-71 [PMID: 8819534]
  13. F1000Res. 2021 Jul 8;10:550 [PMID: 35106136]
  14. Microb Pathog. 2021 Jun;155:104930 [PMID: 33933603]
  15. Nat Rev Microbiol. 2022 Jun;20(6):335-350 [PMID: 34975154]
  16. Adv Bioinformatics. 2019 Jul 1;2019:6815105 [PMID: 31354813]
  17. World J Clin Cases. 2015 Feb 16;3(2):156-62 [PMID: 25685762]
  18. Int J Mol Sci. 2018 Jun 06;19(6): [PMID: 29882798]
  19. Chembiochem. 2021 Oct 13;22(20):2946-2950 [PMID: 34265150]
  20. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  21. Int J Mol Sci. 2020 Aug 04;21(15): [PMID: 32759852]
  22. Recent Pat CNS Drug Discov. 2013 Aug;8(2):123-41 [PMID: 23597304]
  23. Toxicon. 2000 Dec;38(12):1715-29 [PMID: 10858512]
  24. Mol Neurobiol. 2019 Mar;56(3):1841-1851 [PMID: 29936690]
  25. Nat Rev Microbiol. 2009 Mar;7(3):226-36 [PMID: 19198616]
  26. Medicina (Kaunas). 2021 Mar 20;57(3): [PMID: 33804646]
  27. Sci Adv. 2021 Oct 08;7(41):eabk2226 [PMID: 34623907]
  28. Clin Toxicol (Phila). 2020 Feb;58(2):132-135 [PMID: 31079507]
  29. BMJ Open. 2021 Dec 20;11(12):e050501 [PMID: 34930729]
  30. F1000Res. 2021 May 11;10:370 [PMID: 34336189]
  31. Int J Mol Sci. 2022 Jan 08;23(2): [PMID: 35054856]
  32. Curr Med Chem. 2008;15(11):1116-25 [PMID: 18473807]
  33. Parkinsonism Relat Disord. 2021 Sep;90:27-32 [PMID: 34348192]
  34. Signal Transduct Target Ther. 2021 Feb 26;6(1):94 [PMID: 33637672]
  35. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  36. Reprod Toxicol. 2022 Aug;111:34-48 [PMID: 35525527]
  37. Nature. 2022 Apr;604(7905):330-336 [PMID: 35172323]
  38. J Biomed Sci. 2019 Aug 21;26(1):59 [PMID: 31434568]
  39. Chem Rev. 2011 Oct 12;111(10):6130-85 [PMID: 21910409]
  40. J Chem Neuroanat. 2021 Sep;115:101965 [PMID: 33989761]
  41. Rapid Commun Mass Spectrom. 2015 Apr 15;29(7):690-4 [PMID: 26212288]
  42. J Chem Neuroanat. 1995 Aug;9(2):99-112 [PMID: 8561953]
  43. Nature. 1969 Dec 27;224(5226):1280-4 [PMID: 5359293]
  44. Neurol Clin. 2020 Nov;38(4):881-896 [PMID: 33040867]
  45. Methods Mol Biol. 2014;1156:213-22 [PMID: 24791991]
  46. Rapid Commun Mass Spectrom. 2015 Oct 15;29(19):1703-10 [PMID: 26331920]
  47. Aten Primaria. 2019 Jan;51(1):32-39 [PMID: 29061311]
  48. J Clin Neurosci. 2016 Jul;29:199-201 [PMID: 26896910]
  49. Neurobiol Aging. 2021 Oct;106:37-44 [PMID: 34233212]
  50. Molecules. 2021 Jun 03;26(11): [PMID: 34204855]
  51. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  52. Rapid Commun Mass Spectrom. 2019 Jul 30;33(14):1221-1225 [PMID: 31013543]
  53. Immunol Rev. 2012 Jan;245(1):209-26 [PMID: 22168422]
  54. Int J Infect Dis. 2021 Apr;105:540-550 [PMID: 33610778]
  55. Toxins (Basel). 2020 Sep 04;12(9): [PMID: 32899816]
  56. J Neurochem. 2001 Jun;77(5):1396-406 [PMID: 11389190]
  57. Mol Microbiol. 2007 Jan;63(2):497-506 [PMID: 17176256]
  58. J Neurol. 2021 Sep;268(9):3059-3071 [PMID: 33486564]
  59. Mol Neurobiol. 2021 Mar;58(3):1017-1023 [PMID: 33078369]
  60. J Infect. 2021 Feb;82(2):282-327 [PMID: 32822684]
  61. Dev Neurobiol. 2012 May;72(5):713-28 [PMID: 21913336]
  62. Expert Rev Proteomics. 2010 Feb;7(1):39-53 [PMID: 20121475]
  63. World J Gastroenterol. 2016 Aug 7;22(29):6638-51 [PMID: 27547007]
  64. FEBS J. 2020 Sep;287(17):3656-3663 [PMID: 32790936]
  65. Front Microbiol. 2020 Oct 16;11:582779 [PMID: 33178164]
  66. JAMA Neurol. 2020 Jun 1;77(6):683-690 [PMID: 32275288]
  67. Biochem Biophys Res Commun. 2019 Sep 24;517(3):507-512 [PMID: 31375212]

Word Cloud

Created with Highcharts 10.0.0COVID-19COVIDpeptidesSARS-CoV-2knownlongpatientstoxin-likebehaviormicrobiomeacuteclinicalmanifestationsacetylcholinepresencesimilargutalsoviralbacteriabacteriophage3yearssincebeginningoutbreakhoweveryetlittlecarepulmonaryextra-pulmonarytypesExtra-pulmonaryonesincludeextremetirednessfatigueshortnessbreathmuscleacheshyposmiadysgeusianeurologicalautoimmunediseasesParkinson'sdiseasePDAlzheimer'sDiseaseADwellrolecrucialolfactorydysfunctionalreadyobservedplasmaurinefaecalsamplesmoleculesaltersignalingobservingproductionbacterialculturesperformedadditionalproteomicsanalysesbetterunderstandreportedextendeddatalatestvitroexperimentseemscontinuesproducedecreaseRNAloadmolecularteststoxicologicalinteractionsgut/humanvirussuggestnewscenariostudysymptomsdiscussedtoxinsproducedcontinuouslyaggressioncanblockedusingappropriatecombinationcertaindrugsToxin-likePeptidesBacterialCulturesDerivedGutMicrobiomeInfectedSARS-CoV-2-NewDataPossibleRoleLongPattern

Similar Articles

Cited By