Exploring Genetic and Neural Risk of Specific Reading Disability within a Nuclear Twin Family Case Study: A Translational Clinical Application.

Tina Thomas, Griffin Litwin, David J Francis, Elena L Grigorenko
Author Information
  1. Tina Thomas: Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA. ORCID
  2. Griffin Litwin: Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX 77204, USA. ORCID
  3. David J Francis: Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX 77204, USA.
  4. Elena L Grigorenko: Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX 77204, USA.

Abstract

Imaging and genetic studies have characterized biological risk factors contributing to specific Reading Disability (SRD). The current study aimed to apply this literature to a family of twins discordant for SRD and an older sibling with reading difficulty. Intraclass correlations were used to understand the similarity of imaging phenotypes between pairs. Reading-related genes and brain region phenotypes, including asymmetry indices representing the relative size of left compared to right hemispheric structures, were descriptively examined. SNPs that corresponded between the SRD siblings and not the typically developing (TD) siblings were in genes , , , , , , , and . Imaging phenotypes were similar among all sibling pairs for grey matter volume and surface area, but cortical thickness in reading-related regions of interest (ROIs) was more similar among the siblings with SRD, followed by the twins, and then the TD twin and older siblings, suggesting cortical thickness may differentiate risk for this family. The siblings with SRD had more symmetry of cortical thickness in the transverse temporal and superior temporal gyri, while the TD sibling had greater rightward asymmetry. The TD sibling had a greater leftward asymmetry of grey matter volume and cortical surface area in the fusiform, supramarginal, and transverse temporal gyrus. This exploratory study demonstrated that reading-related risk factors appeared to correspond with SRD within this family, suggesting that early examination of biological factors may benefit early identification. Future studies may benefit from the use of polygenic risk scores or machine learning to better understand SRD risk.

Keywords

References

  1. Cortex. 2019 Feb;111:286-302 [PMID: 30557815]
  2. Genes Brain Behav. 2014 Sep;13(7):686-701 [PMID: 25065397]
  3. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  4. Lang Linguist Compass. 2019 Sep;13(9): [PMID: 31844423]
  5. Eur Radiol. 2020 May;30(5):2821-2829 [PMID: 32002640]
  6. Cortex. 2007 Aug;43(6):777-91 [PMID: 17710829]
  7. Transl Psychiatry. 2013 Feb 19;3:e229 [PMID: 23423138]
  8. Neuroimage. 1999 Feb;9(2):195-207 [PMID: 9931269]
  9. Genes Brain Behav. 2013 Nov;12(8):792-801 [PMID: 24024963]
  10. Am J Hum Genet. 2009 Aug;85(2):264-72 [PMID: 19646677]
  11. PLoS One. 2014 Jan 10;9(1):e83668 [PMID: 24427278]
  12. Neuropsychologia. 2017 Sep;104:234-249 [PMID: 28757003]
  13. Neuroimage. 2010 Oct 15;53(1):1-15 [PMID: 20547229]
  14. Biol Psychiatry. 2011 Aug 1;70(3):237-45 [PMID: 21457949]
  15. J Neurodev Disord. 2016 Jun 14;8:24 [PMID: 27307794]
  16. Neuropsychologia. 2019 Jul;130:38-43 [PMID: 29550525]
  17. Ann Dyslexia. 2008 Jun;58(1):1-14 [PMID: 18483867]
  18. J Commun Disord. 2002 Nov-Dec;35(6):501-31 [PMID: 12443050]
  19. Genes Brain Behav. 2020 Jul;19(6):e12648 [PMID: 32108986]
  20. Neurosci Biobehav Rev. 2021 Feb;121:175-200 [PMID: 33246020]
  21. Brain. 2014 Dec;137(Pt 12):3136-41 [PMID: 25125610]
  22. Nat Commun. 2020 Sep 22;11(1):4796 [PMID: 32963231]
  23. Front Psychol. 2013 Jan 07;3:601 [PMID: 23308072]
  24. Brain Lang. 2017 Nov;174:29-41 [PMID: 28715717]
  25. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33 [PMID: 27322403]
  26. J Child Neurol. 2008 Apr;23(4):368-80 [PMID: 18160557]
  27. Cereb Cortex. 2008 Aug;18(8):1737-47 [PMID: 18234689]
  28. Neuroimage. 2010 Aug 15;52(2):455-69 [PMID: 20430102]
  29. Transl Psychiatry. 2017 Jan 3;7(1):e987 [PMID: 28045463]
  30. Perspect Psychol Sci. 2010 Sep;5(5):499-501 [PMID: 26162195]
  31. J Neurodev Disord. 2011 Mar;3(1):39-49 [PMID: 21484596]
  32. Dev Psychopathol. 2015 Feb;27(1):1-6 [PMID: 25640826]
  33. Brain. 2006 Dec;129(Pt 12):3329-42 [PMID: 17012292]
  34. Adv Genet. 2016;96:53-97 [PMID: 27968731]
  35. Neurosci Biobehav Rev. 2018 Jan;84:434-452 [PMID: 28797557]
  36. Cortex. 2018 Apr;101:96-106 [PMID: 29459284]
  37. Trends Cogn Sci. 2005 Jul;9(7):335-41 [PMID: 15951224]
  38. Behav Brain Res. 2021 Jan 1;396:112859 [PMID: 32810467]
  39. Cereb Cortex. 2020 Sep 3;30(10):5449-5459 [PMID: 32488230]
  40. Genes Brain Behav. 2013 Feb;12(1):56-69 [PMID: 23190410]
  41. Neuron. 2017 Oct 11;96(2):298-311 [PMID: 29024656]
  42. Front Behav Neurosci. 2018 Jul 31;12:162 [PMID: 30108491]
  43. Mol Psychiatry. 2021 Jul;26(7):3004-3017 [PMID: 33057169]
  44. Cereb Cortex. 2018 Jul 1;28(7):2297-2312 [PMID: 28591795]
  45. Dev Neuropsychol. 2008;33(6):663-81 [PMID: 19005910]
  46. Cereb Cortex. 2018 Jan 1;28(1):63-72 [PMID: 29253247]
  47. J Learn Disabil. 2010 Sep-Oct;43(5):391-401 [PMID: 19890075]
  48. EBioMedicine. 2018 Aug;34:165-170 [PMID: 30017804]
  49. J Cogn Neurosci. 2014 Jan;26(1):54-62 [PMID: 24001007]
  50. Neurology. 2002 Apr 23;58(8):1203-13 [PMID: 11971088]
  51. Cortex. 2016 Mar;76:51-62 [PMID: 26859852]
  52. Neurosci Biobehav Rev. 2012 Jul;36(6):1532-52 [PMID: 22516793]
  53. Neuroimage. 2011 Jun 1;56(3):1735-42 [PMID: 21338695]
  54. Neuroimage. 2011 Aug 1;57(3):733-41 [PMID: 21029785]
  55. Eur J Hum Genet. 2014 Feb;22(2):171-8 [PMID: 23714751]
  56. Genes Brain Behav. 2014 Apr;13(4):418-29 [PMID: 24571439]
  57. Prev Sci. 2018 Jan;19(1):101-108 [PMID: 28735446]
  58. Hum Brain Mapp. 2015 May;36(5):1741-54 [PMID: 25598483]
  59. Hum Brain Mapp. 2013 Nov;34(11):3055-65 [PMID: 22711189]
  60. Brain Lang. 2017 Sep;172:9-15 [PMID: 27476042]
  61. Brain Behav. 2020 Aug;10(8):e01735 [PMID: 32596987]
  62. Dev Cogn Neurosci. 2019 Apr;36:100636 [PMID: 30913497]
  63. J Learn Disabil. 2020 Sep/Oct;53(5):343-353 [PMID: 32075514]
  64. Neuroimage. 2022 Apr 1;249:118909 [PMID: 35033675]
  65. Bioinformatics. 2010 Apr 1;26(7):979-81 [PMID: 20338898]
  66. J Int Neuropsychol Soc. 2011 Sep;17(5):875-85 [PMID: 21740612]
  67. Hum Brain Mapp. 2008 May;29(5):613-25 [PMID: 17636558]
  68. Transl Psychiatry. 2020 Apr 20;10(1):107 [PMID: 32313006]
  69. Nat Neurosci. 2016 Oct 26;19(11):1392-1396 [PMID: 27786187]
  70. Science. 2013 Jun 14;340(6138):1230531 [PMID: 23766329]
  71. Genet Med. 2007 Oct;9(10):665-74 [PMID: 18073579]
  72. Brain Stimul. 2020 Nov - Dec;13(6):1813-1820 [PMID: 33127581]
  73. Brain Stimul. 2012 Jul;5(3):201-207 [PMID: 22305346]
  74. J Vis. 2006 Feb 28;6(4):335-55 [PMID: 16889473]
  75. Mol Psychiatry. 2021 Jun;26(6):2277-2285 [PMID: 32051549]

Grants

  1. HD052117/NIH HHS
  2. HD052120/NIH HHS

Word Cloud

Created with Highcharts 10.0.0SRDrisksiblingssiblingTDcorticalfactorsreadingfamilyphenotypesasymmetrythicknessmaytemporalImagingstudiesbiologicaldisabilitystudytwinsolderunderstandpairsgenessimilaramonggreymattervolumesurfaceareareading-relatedsuggestingtransversegreaterwithinearlybenefitgeneticcharacterizedcontributingspecificcurrentaimedapplyliteraturediscordantdifficultyIntraclasscorrelationsusedsimilarityimagingReading-relatedbrainregionincludingindicesrepresentingrelativesizeleftcomparedrighthemisphericstructuresdescriptivelyexaminedSNPscorrespondedtypicallydevelopingregionsinterestROIsfollowedtwindifferentiatesymmetrysuperiorgyrirightwardleftwardfusiformsupramarginalgyrusexploratorydemonstratedappearedcorrespondexaminationidentificationFutureusepolygenicscoresmachinelearningbetterExploringGeneticNeuralRiskSpecificReadingDisabilityNuclearTwinFamilyCaseStudy:TranslationalClinicalApplicationgeneticsneuroimaging

Similar Articles

Cited By

No available data.