Progress and Challenges in Elucidating the Functional Role of Effectors in the Soybean- Interaction.

Mst Hur Madina, Parthasarathy Santhanam, Yanick Asselin, Rajdeep Jaswal, Richard R Bélanger
Author Information
  1. Mst Hur Madina: Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada.
  2. Parthasarathy Santhanam: Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada.
  3. Yanick Asselin: Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada.
  4. Rajdeep Jaswal: Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada.
  5. Richard R Bélanger: Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada. ORCID

Abstract

, the agent responsible for stem and root rot, is one of the most damaging plant pathogens of soybean. To establish a compatible-interaction, secretes a wide array of effector proteins into the host cell. These effectors have been shown to act either in the apoplastic area or the cytoplasm of the cell to manipulate the host cellular processes in favor of the development of the pathogen. Deciphering effector-plant interactions is important for understanding the role of effectors in disease progression and developing approaches to prevent infection. Here, we review the subcellular localization, the host proteins, and the processes associated with effectors. We also discuss the emerging topic of effectors in the context of effector-resistance genes interaction, as well as model systems and recent developments in resources and techniques that may provide a better understanding of the soybean- interaction.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5850-5 [PMID: 25902521]
  2. Nat Commun. 2017 Dec 12;8(1):2051 [PMID: 29233978]
  3. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13177-82 [PMID: 20615948]
  4. Nat Commun. 2021 Nov 5;12(1):6263 [PMID: 34741017]
  5. Bio Protoc. 2018 Jul 20;8(14):e2928 [PMID: 34395750]
  6. Annu Rev Phytopathol. 2012;50:295-318 [PMID: 22920560]
  7. Plant Cell. 2023 Jan 2;35(1):574-597 [PMID: 36222564]
  8. Plant J. 2009 Nov;60(4):744-54 [PMID: 19686537]
  9. Plant J. 2006 Oct;48(2):165-76 [PMID: 16965554]
  10. Curr Opin Microbiol. 2018 Dec;46:7-13 [PMID: 29454192]
  11. Mol Plant Pathol. 2020 Mar;21(3):318-329 [PMID: 31908142]
  12. Mol Plant Microbe Interact. 2013 Jul;26(7):711-20 [PMID: 23530601]
  13. Curr Protoc Plant Biol. 2019 Dec;4(4):e20099 [PMID: 31714676]
  14. Mol Plant Pathol. 2014 Dec;15(9):865-70 [PMID: 25382065]
  15. Plant Dis. 2021 Dec;105(12):4006-4013 [PMID: 34161124]
  16. BMC Biol. 2018 Jul 26;16(1):80 [PMID: 30049268]
  17. Elife. 2019 Sep 19;8: [PMID: 31535972]
  18. Elife. 2024 Feb 27;12: [PMID: 38411527]
  19. Plant Physiol. 2015 Sep;169(1):793-802 [PMID: 26206852]
  20. Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):671-9 [PMID: 15331097]
  21. Mol Plant Pathol. 2007 Jan;8(1):1-8 [PMID: 20507474]
  22. New Phytol. 2012 Oct;196(1):247-260 [PMID: 22816601]
  23. Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102 [PMID: 22251901]
  24. Fungal Genet Biol. 2019 Sep;130:43-53 [PMID: 31048007]
  25. Nat Biotechnol. 2014 Apr;32(4):347-55 [PMID: 24584096]
  26. Int J Mol Sci. 2022 Jun 17;23(12): [PMID: 35743201]
  27. Science. 2021 Aug 20;373(6557):871-876 [PMID: 34282049]
  28. Science. 2010 Dec 10;330(6010):1549-1551 [PMID: 21148394]
  29. Plant Dis. 2018 Jan;102(1):114-123 [PMID: 30673456]
  30. New Phytol. 2020 Oct;228(2):445-458 [PMID: 32394464]
  31. Mol Cell. 1999 Mar;3(3):339-48 [PMID: 10198636]
  32. Nat Genet. 2013 Mar;45(3):330-3 [PMID: 23377181]
  33. Front Plant Sci. 2016 Dec 19;7:1887 [PMID: 28066456]
  34. PLoS One. 2021 Jul 14;16(7):e0254645 [PMID: 34260624]
  35. Fungal Genet Biol. 2002 Oct;37(1):1-12 [PMID: 12223184]
  36. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17421-6 [PMID: 20847293]
  37. Curr Opin Plant Biol. 2009 Apr;12(2):133-9 [PMID: 19179104]
  38. New Phytol. 2017 Apr;214(1):361-375 [PMID: 28134441]
  39. J Bacteriol. 2008 Apr;190(8):2880-91 [PMID: 18263728]
  40. Mol Plant Microbe Interact. 2009 Feb;22(2):115-22 [PMID: 19132864]
  41. Plant Cell. 2015 Jul;27(7):2057-72 [PMID: 26163574]
  42. Mol Plant. 2019 Apr 1;12(4):552-564 [PMID: 30703565]
  43. Plant Physiol. 2014 Oct;166(2):455-69 [PMID: 24868032]
  44. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20832-7 [PMID: 22143776]
  45. Science. 2006 Sep 1;313(5791):1261-6 [PMID: 16946064]
  46. J Eukaryot Microbiol. 2011 Sep-Oct;58(5):424-5 [PMID: 21699623]
  47. Front Plant Sci. 2020 Mar 24;11:294 [PMID: 32265954]
  48. Front Plant Sci. 2018 Aug 24;9:1245 [PMID: 30197654]
  49. Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):8054-8059 [PMID: 30926664]
  50. Science. 2017 Feb 17;355(6326):710-714 [PMID: 28082413]
  51. BMC Bioinformatics. 2021 Jul 17;22(1):372 [PMID: 34273967]
  52. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  53. Comp Funct Genomics. 2004;5(4):342-53 [PMID: 18629169]
  54. Front Plant Sci. 2014 Nov 12;5:638 [PMID: 25429296]
  55. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33658365]
  56. PLoS One. 2014 May 23;9(5):e98114 [PMID: 24858571]
  57. PLoS One. 2011;6(7):e20172 [PMID: 21779316]
  58. BMC Genomics. 2014 Jan 10;15:18 [PMID: 24410936]
  59. Plant Physiol. 2023 Feb 12;191(2):925-945 [PMID: 36461945]
  60. Nat Rev Drug Discov. 2008 Dec;7(12):1013-30 [PMID: 19043451]
  61. ACS Synth Biol. 2019 Feb 15;8(2):445-454 [PMID: 30616338]
  62. Plant Commun. 2020 Apr 24;1(4):100050 [PMID: 33367246]
  63. Mol Plant Microbe Interact. 2014 Mar;27(3):196-206 [PMID: 24405032]
  64. Front Plant Sci. 2022 May 23;13:813181 [PMID: 35677245]
  65. Front Plant Sci. 2021 Oct 06;12:725571 [PMID: 34691104]
  66. Environ Microbiol. 2019 Dec;21(12):4537-4547 [PMID: 31314944]
  67. Mol Plant Microbe Interact. 2013 Aug;26(8):958-68 [PMID: 23594349]
  68. Planta. 2019 Aug;250(2):413-425 [PMID: 31243548]
  69. Mol Plant Pathol. 2016 Jan;17(1):127-39 [PMID: 26507366]
  70. Curr Biol. 2017 Apr 3;27(7):981-991 [PMID: 28318979]
  71. Mol Plant Pathol. 2022 Mar;23(3):417-430 [PMID: 34851539]
  72. Plant Commun. 2020 Dec 15;2(2):100137 [PMID: 33898976]
  73. BMC Genomics. 2020 Apr 3;21(1):280 [PMID: 32245402]
  74. Mol Plant Microbe Interact. 2021 Nov;34(11):1267-1280 [PMID: 34415195]
  75. Phytochemistry. 2006 Aug;67(16):1800-7 [PMID: 16430931]
  76. Planta. 2000 Jan;210(2):195-204 [PMID: 10664125]
  77. Microorganisms. 2022 May 31;10(6): [PMID: 35744657]
  78. Mol Plant Pathol. 2021 Jun;22(6):737-752 [PMID: 33724663]
  79. PLoS One. 2009;4(4):e5066 [PMID: 19343173]
  80. PLoS One. 2009;4(5):e5556 [PMID: 19440541]
  81. PLoS Genet. 2014 Oct 23;10(10):e1004655 [PMID: 25340333]
  82. Mol Plant Pathol. 2003 Sep 1;4(5):383-91 [PMID: 20569398]
  83. PLoS Pathog. 2021 Mar 12;17(3):e1009388 [PMID: 33711077]
  84. New Phytol. 2019 Apr;222(1):425-437 [PMID: 30394556]
  85. Nat Methods. 2006 Feb;3(2):135-9 [PMID: 16432524]
  86. Nat Protoc. 2015 Jan;10(1):169-87 [PMID: 25521792]
  87. Trends Plant Sci. 2007 Oct;12(10):452-7 [PMID: 17826296]
  88. PLoS Pathog. 2015 Dec 29;11(12):e1005348 [PMID: 26714171]
  89. Microbiol Mol Biol Rev. 2015 Sep;79(3):263-80 [PMID: 26041933]
  90. PLoS One. 2013 Jul 29;8(7):e70036 [PMID: 23922898]
  91. Mol Plant Microbe Interact. 2004 Apr;17(4):394-403 [PMID: 15077672]
  92. Mol Plant Microbe Interact. 2012 Jul;25(7):896-909 [PMID: 22397404]
  93. Mol Plant Microbe Interact. 2010 Apr;23(4):425-35 [PMID: 20192830]
  94. Nature. 2009 Sep 17;461(7262):393-8 [PMID: 19741609]
  95. Elife. 2018 Oct 22;7: [PMID: 30346270]
  96. PLoS Biol. 2014 Feb 25;12(2):e1001801 [PMID: 24586116]
  97. Nat Methods. 2015 Jan;12(1):51-4 [PMID: 25419960]
  98. Curr Opin Plant Biol. 2014 Aug;20:96-103 [PMID: 24879450]
  99. Science. 2014 Nov 28;346(6213):1258096 [PMID: 25430774]
  100. Genetics. 2002 Mar;160(3):949-59 [PMID: 11901113]
  101. Proteomics. 2011 Mar;11(6):1153-9 [PMID: 21365760]
  102. Mol Plant Pathol. 2022 May;23(5):693-706 [PMID: 35150190]
  103. Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):487-496 [PMID: 15653923]
  104. Nat Commun. 2013;4:1349 [PMID: 23322037]
  105. Nat Biotechnol. 2018 Oct;36(9):880-887 [PMID: 30125270]
  106. J Exp Bot. 2020 Dec 2;71(21):6844-6855 [PMID: 32090252]
  107. Genome Res. 2003 Jul;13(7):1675-85 [PMID: 12840044]
  108. Int J Mol Sci. 2020 Apr 06;21(7): [PMID: 32268496]
  109. Curr Opin Plant Biol. 2010 Aug;13(4):394-401 [PMID: 20570209]
  110. Nat Protoc. 2007;2(4):948-52 [PMID: 17446894]
  111. Plant Sci. 2011 Mar;180(3):439-46 [PMID: 21421390]
  112. PLoS One. 2014 Feb 24;9(2):e89738 [PMID: 24586999]
  113. Nat Commun. 2016 Jun 03;7:11685 [PMID: 27256489]
  114. BMC Plant Biol. 2018 May 30;18(1):97 [PMID: 29848307]
  115. PLoS Pathog. 2011 Nov;7(11):e1002353 [PMID: 22102810]
  116. PLoS One. 2013;8(3):e59517 [PMID: 23536880]
  117. PLoS Pathog. 2021 Nov 29;17(11):e1010104 [PMID: 34843607]
  118. Front Plant Sci. 2017 Dec 19;8:2155 [PMID: 29312401]
  119. Plant Physiol. 2015 Jan;167(1):164-75 [PMID: 25424308]
  120. Annu Rev Phytopathol. 2006;44:41-60 [PMID: 16448329]

Word Cloud

Created with Highcharts 10.0.0effectorshostsoybeaneffectorproteinscellprocessesinteractionsunderstandinglocalizationinteractionagentresponsiblestemrootrotonedamagingplantpathogensestablishcompatible-interactionsecreteswidearrayshownacteitherapoplasticareacytoplasmmanipulatecellularfavordevelopmentpathogenDecipheringeffector-plantimportantrolediseaseprogressiondevelopingapproachespreventinfectionreviewsubcellularassociatedalsodiscussemergingtopiccontexteffector-resistancegeneswellmodelsystemsrecentdevelopmentsresourcestechniquesmayprovidebettersoybean-ProgressChallengesElucidatingFunctionalRoleEffectorsSoybean-Interactionhemibiotrophsprotein–proteinstructures

Similar Articles

Cited By