Myrcene Salvages Rotenone-Induced Loss of Dopaminergic Neurons by Inhibiting Oxidative Stress, Inflammation, Apoptosis, and Autophagy.

Sheikh Azimullah, Richard L Jayaraj, Mohamed Fizur Nagoor Meeran, Fakhreya Y Jalal, Abdu Adem, Shreesh Ojha, Rami Beiram
Author Information
  1. Sheikh Azimullah: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates. ORCID
  2. Richard L Jayaraj: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates. ORCID
  3. Mohamed Fizur Nagoor Meeran: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates. ORCID
  4. Fakhreya Y Jalal: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
  5. Abdu Adem: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates. ORCID
  6. Shreesh Ojha: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates. ORCID
  7. Rami Beiram: Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.

Abstract

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor deficits. The exact etiology of PD is currently unknown; however, the pathological hallmarks of PD include excessive production of reactive oxygen species, enhanced neuroinflammation, and overproduction of α-synuclein. Under normal physiological conditions, aggregated α-synuclein is degraded via the autophagy lysosomal pathway. However, impairment of the autophagy lysosomal pathway results in α-synuclein accumulation, thereby facilitating the pathogenesis of PD. Current medications only manage the symptoms, but are unable to delay, prevent, or cure the disease. Collectively, oxidative stress, inflammation, apoptosis, and autophagy play crucial roles in PD; therefore, there is an enormous interest in exploring novel bioactive agents of natural origin for their protective roles in PD. The present study evaluated the role of myrcene, a monoterpene, in preventing the loss of dopaminergic neurons in a rotenone (ROT)-induced rodent model of PD, and elucidated the underlying mechanisms. Myrcene was administered at a dose of 50 mg/kg, 30 min prior to the intraperitoneal injections of ROT (2.5 mg/kg). Administration of ROT caused a considerable loss of dopaminergic neurons, subsequent to a significant reduction in the antioxidant defense systems, increased lipid peroxidation, and activation of microglia and astrocytes, along with the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) and matrix metalloproteinase-9. Rotenone also resulted in impairment of the autophagy lysosomal pathway, as evidenced by increased expression of LC3, p62, and beclin-1 with decreased expression in the phosphorylation of mTOR protein. Collectively, these factors result in the loss of dopaminergic neurons. However, myrcene treatment has been observed to restore antioxidant defenses and attenuate the increase in concentrations of lipid peroxidation products, pro-inflammatory cytokines, diminished microglia, and astrocyte activation. Myrcene treatment also enhanced the phosphorylation of mTOR, reinstated neuronal homeostasis, restored autophagy-lysosomal degradation, and prevented the increased expression of α-synuclein following the rescue of dopaminergic neurons. Taken together, our study clearly revealed the mitigating effect of myrcene on dopaminergic neuronal loss, attributed to its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, and favorable modulation of autophagic flux. This study suggests that myrcene may be a potential candidate for therapeutic benefits in PD.

Keywords

References

  1. Biochim Biophys Acta. 2011 Feb;1812(2):141-50 [PMID: 20600869]
  2. Brain Res. 2015 Nov 2;1625:180-8 [PMID: 26342896]
  3. Cell. 2010 Mar 19;140(6):918-34 [PMID: 20303880]
  4. Lancet. 2017 Oct 7;390(10103):1628-1630 [PMID: 28781109]
  5. Neurosci Lett. 1985 Dec 18;62(3):389-94 [PMID: 3912685]
  6. Neurochem Res. 2012 Oct;37(10):2178-89 [PMID: 22846965]
  7. Antioxid Redox Signal. 2012 May 1;16(9):920-34 [PMID: 21554057]
  8. Exp Neurol. 2005 Jun;193(2):279-90 [PMID: 15869932]
  9. Front Nutr. 2021 Jul 19;8:699666 [PMID: 34350208]
  10. Eur J Pharmacol. 2015 Mar 5;750:141-50 [PMID: 25622554]
  11. Toxicol Appl Pharmacol. 2009 Apr 15;236(2):194-201 [PMID: 19371603]
  12. Ann N Y Acad Sci. 2003 Jun;991:214-28 [PMID: 12846989]
  13. ACS Chem Neurosci. 2012 Dec 19;3(12):1063-72 [PMID: 23259041]
  14. J Neuroinflammation. 2004 May 17;1(1):6 [PMID: 15285796]
  15. Exp Neurol. 2008 Jan;209(1):5-11 [PMID: 17603039]
  16. Histochemistry. 1991;96(6):499-503 [PMID: 1722787]
  17. Neurobiol Dis. 2006 May;22(2):404-20 [PMID: 16439141]
  18. F1000Res. 2019 Jul 2;8: [PMID: 31316753]
  19. J Cell Sci. 2018 Nov 30;131(23): [PMID: 30404831]
  20. Proc Jpn Acad Ser B Phys Biol Sci. 2007 Mar;83(2):39-46 [PMID: 24019583]
  21. Trends Neurosci. 2010 Dec;33(12):541-9 [PMID: 20947179]
  22. Mol Cell Neurosci. 2000 Dec;16(6):724-39 [PMID: 11124893]
  23. Biochem Pharmacol. 2018 Dec;158:207-216 [PMID: 30393045]
  24. FASEB J. 2002 Nov;16(13):1826-8 [PMID: 12223445]
  25. J Cell Biochem. 2017 Oct;118(10):3495-3510 [PMID: 28338241]
  26. Genes Dev. 2007 Nov 15;21(22):2861-73 [PMID: 18006683]
  27. J Cell Sci. 2007 Dec 1;120(Pt 23):4155-66 [PMID: 18032788]
  28. Nat Rev Dis Primers. 2017 Mar 23;3:17013 [PMID: 28332488]
  29. J Neurosci Res. 2007 Apr;85(5):919-34 [PMID: 17279544]
  30. J Neurochem. 2005 Jul;94(1):215-25 [PMID: 15953364]
  31. Neurotox Res. 2016 Feb;29(2):275-87 [PMID: 26607911]
  32. Autophagy. 2012 Jun;8(6):903-14 [PMID: 22576015]
  33. Parkinsons Dis. 2018 Sep 2;2018:9163040 [PMID: 30245802]
  34. Neurobiol Dis. 2010 Mar;37(3):510-8 [PMID: 19913097]
  35. Lancet. 2015 Aug 29;386(9996):896-912 [PMID: 25904081]
  36. Semin Cell Dev Biol. 2008 Feb;19(1):42-51 [PMID: 17646116]
  37. J Ethnopharmacol. 2010 Aug 9;130(3):593-8 [PMID: 20538054]
  38. Cytokines Cell Mol Ther. 2002 Mar;7(1):1-14 [PMID: 12171246]
  39. J Pharmacol Toxicol Methods. 2008 Mar-Apr;57(2):114-30 [PMID: 18155613]
  40. Antioxid Redox Signal. 2012 May 1;16(9):869-82 [PMID: 21568830]
  41. Neuropharmacology. 2014 Apr;79:190-200 [PMID: 24296154]
  42. J Am Coll Nutr. 2019 Mar-Apr;38(3):267-274 [PMID: 30716018]
  43. Acta Cir Bras. 2016 Jul;31(7):456-62 [PMID: 27487280]
  44. Biochim Biophys Acta. 2004 Jul 23;1658(1-2):44-9 [PMID: 15282173]
  45. Neural Regen Res. 2018 Jan;13(1):112-118 [PMID: 29451215]
  46. Toxicol Lett. 2015 Mar 4;233(2):163-71 [PMID: 25433145]
  47. BMC Neurosci. 2016 Aug 22;17(1):58 [PMID: 27549180]
  48. Histol Histopathol. 1997 Jan;12(1):25-31 [PMID: 9046040]
  49. Curr Med Chem. 2016;23(24):2666-2679 [PMID: 27776473]
  50. Mol Neurobiol. 2012 Dec;46(3):639-61 [PMID: 22899187]
  51. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1442-8 [PMID: 1764096]
  52. Neuropathology. 2007 Oct;27(5):494-506 [PMID: 18018486]
  53. Neurochem Int. 2006 Jul;49(1):28-40 [PMID: 16490285]
  54. Annu Rev Nutr. 2007;27:19-40 [PMID: 17311494]
  55. Neurodegener Dis Manag. 2017 Oct;7(5):273-277 [PMID: 29043906]
  56. Nat Rev Neurol. 2015 Nov;11(11):625-36 [PMID: 26503923]
  57. J Parkinsons Dis. 2013;3(4):461-91 [PMID: 24252804]
  58. Neurochem Res. 2014 Sep;39(9):1717-23 [PMID: 24972849]
  59. Acta Neuropathol. 2008 Apr;115(4):453-9 [PMID: 18000672]
  60. Ann Neurol. 2003;53 Suppl 3:S49-58; discussion S58-60 [PMID: 12666098]
  61. Drug Des Devel Ther. 2015 Oct 07;9:5499-510 [PMID: 26504373]
  62. Nat Neurosci. 2000 Dec;3(12):1301-6 [PMID: 11100151]

MeSH Term

Humans
alpha-Synuclein
Antioxidants
Apoptosis
Autophagy
Cytokines
Dopaminergic Neurons
Inflammation
Oxidative Stress
Parkinson Disease
Rotenone

Chemicals

alpha-Synuclein
Antioxidants
Cytokines
myrcene
Rotenone

Word Cloud

Created with Highcharts 10.0.0PDdopaminergiclossneuronsmyrceneα-synucleinautophagydiseaselysosomalpathwaystudyROTMyrceneantioxidantincreasedexpressionproductionenhancedHoweverimpairmentCollectivelyoxidativestressinflammationrolesrotenonemg/kglipidperoxidationactivationmicrogliapro-inflammatorycytokinesalsophosphorylationmTORtreatmentneuronalautophagicfluxParkinson'scharacterizedsubstantianigraparscompactaresultingmotordeficitsexactetiologycurrentlyunknownhoweverpathologicalhallmarksincludeexcessivereactiveoxygenspeciesneuroinflammationoverproductionnormalphysiologicalconditionsaggregateddegradedviaresultsaccumulationtherebyfacilitatingpathogenesisCurrentmedicationsmanagesymptomsunabledelaypreventcureapoptosisplaycrucialthereforeenormousinterestexploringnovelbioactiveagentsnaturaloriginprotectivepresentevaluatedrolemonoterpenepreventing-inducedrodentmodelelucidatedunderlyingmechanismsadministereddose5030minpriorintraperitonealinjections25AdministrationcausedconsiderablesubsequentsignificantreductiondefensesystemsastrocytesalongIL-6TNF-αIL-1βmatrixmetalloproteinase-9RotenoneresultedevidencedLC3p62beclin-1decreasedproteinfactorsresultobservedrestoredefensesattenuateincreaseconcentrationsproductsdiminishedastrocytereinstatedhomeostasisrestoredautophagy-lysosomaldegradationpreventedfollowingrescueTakentogetherclearlyrevealedmitigatingeffectattributedpotentanti-inflammatoryanti-apoptoticpropertiesfavorablemodulationsuggestsmaypotentialcandidatetherapeuticbenefitsSalvagesRotenone-InducedLossDopaminergicNeuronsInhibitingOxidativeStressInflammationApoptosisAutophagyParkinson’s

Similar Articles

Cited By