In Silico Analysis of a Parasitoid Venom Peptide Reveals Prevalence of the Cation-Polar-Cation Clip Motif in Knottin Proteins.

Joseph Arguelles, Jenny Lee, Lady V Cardenas, Shubha Govind, Shaneen Singh
Author Information
  1. Joseph Arguelles: Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA. ORCID
  2. Jenny Lee: Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA. ORCID
  3. Lady V Cardenas: Department of Biology, The City College of New York, New York, NY 10031, USA. ORCID
  4. Shubha Govind: Department of Biology, The City College of New York, New York, NY 10031, USA. ORCID
  5. Shaneen Singh: Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA. ORCID

Abstract

As generalist parasitoid wasps, are highly successful on many species of fruit flies of the genus . The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT's 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation-Polar-Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosomycin antifungal peptide, a canonical target gene of the fly's Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure-function relationships will advance novel drug design.

Keywords

References

  1. Open Biol. 2012 May;2(5):120075 [PMID: 22724070]
  2. J Mol Biol. 1999 Dec 17;294(5):1327-36 [PMID: 10600388]
  3. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  4. Molecules. 2015 Feb 02;20(2):2510-28 [PMID: 25648594]
  5. J R Soc Interface. 2017 Nov;14(136): [PMID: 29187635]
  6. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 [PMID: 17483518]
  7. Nucleic Acids Res. 2003 Jul 1;31(13):3503-6 [PMID: 12824354]
  8. Proteins. 2017 Mar;85(3):435-444 [PMID: 27936493]
  9. Curr Opin Insect Sci. 2014 Dec 1;6:61-67 [PMID: 25642411]
  10. Nucleic Acids Res. 2022 Apr 12;: [PMID: 35412617]
  11. Eur J Biochem. 2004 Mar;271(6):1219-26 [PMID: 15009200]
  12. Biochemistry. 2001 Oct 30;40(43):12795-800 [PMID: 11669615]
  13. Development. 1998 May;125(10):1909-20 [PMID: 9550723]
  14. Biochemistry. 2001 Sep 18;40(37):10973-8 [PMID: 11551192]
  15. PLoS Biol. 2004 Aug;2(8):E276 [PMID: 15314671]
  16. Structure. 1997 Apr 15;5(4):571-83 [PMID: 9115446]
  17. Infect Immun. 2009 Feb;77(2):860-6 [PMID: 19047407]
  18. Curr Pharm Des. 2011 Dec;17(38):4337-50 [PMID: 22204432]
  19. Proteins. 2004 Feb 1;54(2):195-205 [PMID: 14696181]
  20. Protein Sci. 2015 Mar;24(3):319-27 [PMID: 25492513]
  21. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 [PMID: 15980461]
  22. Methods Mol Biol. 2022;2364:363-425 [PMID: 34542864]
  23. Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 [PMID: 21109532]
  24. Nat Protoc. 2010 Apr;5(4):725-38 [PMID: 20360767]
  25. Chem Immunol Allergy. 2005;86:1-21 [PMID: 15976485]
  26. Cytoskeleton (Hoboken). 2015 Nov;72(11):585-96 [PMID: 26492945]
  27. J Mol Biol. 1996 Oct 25;263(2):297-310 [PMID: 8913308]
  28. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  29. PLoS One. 2014 Apr 10;9(4):e94477 [PMID: 24722540]
  30. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  31. Proteins. 2009 Nov 15;77(3):499-508 [PMID: 19507241]
  32. Curr Opin Insect Sci. 2014 Dec;6:52-60 [PMID: 32846678]
  33. Bioinformatics. 1999 Apr;15(4):305-8 [PMID: 10320398]
  34. J Endotoxin Res. 2001;7(3):167-202 [PMID: 11581570]
  35. J Gen Virol. 2006 Feb;87(Pt 2):461-470 [PMID: 16432035]
  36. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8388-92 [PMID: 2122461]
  37. Cell Death Differ. 2002 Dec;9(12):1379-81 [PMID: 12478476]
  38. Methods Enzymol. 1997;277:396-404 [PMID: 9379925]
  39. Protein Sci. 1997 Sep;6(9):1878-84 [PMID: 9300487]
  40. Eur J Biochem. 2001 Apr;268(8):2379-89 [PMID: 11298757]
  41. Biochim Biophys Acta. 1999 Mar 19;1430(2):262-8 [PMID: 10082954]
  42. Nucleic Acids Res. 2003 Jul 1;31(13):3784-8 [PMID: 12824418]
  43. Structure. 1997 Dec 15;5(12):1585-97 [PMID: 9438859]
  44. Sci Rep. 2016 Jan 25;6:19604 [PMID: 26803989]
  45. FEBS J. 2016 Jun;283(11):2067-90 [PMID: 27007913]
  46. Curr Biol. 2017 Sep 25;27(18):2869-2877.e6 [PMID: 28889977]
  47. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9427-32 [PMID: 23690612]
  48. Biochemistry. 2003 Dec 16;42(49):14434-42 [PMID: 14661954]
  49. Dis Model Mech. 2019 Jun 18;12(6): [PMID: 31160313]
  50. Adv Parasitol. 2009;70:123-45 [PMID: 19773069]
  51. Biochemistry. 1995 Jan 10;34(1):13-21 [PMID: 7819188]
  52. Comput Biol Chem. 2004 Dec;28(5-6):351-66 [PMID: 15556476]
  53. Biochem Biophys Res Commun. 2010 Sep 24;400(3):352-7 [PMID: 20735987]
  54. J Biol Chem. 2002 Jun 28;277(26):23651-7 [PMID: 11959852]
  55. Biochemistry. 2003 Jul 15;42(27):8214-22 [PMID: 12846570]
  56. Bioinformatics. 2011 Mar 15;27(6):757-63 [PMID: 21216780]
  57. Adv Parasitol. 2009;70:257-80 [PMID: 19773074]
  58. Protein Sci. 2006 Mar;15(3):628-34 [PMID: 16452619]
  59. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  60. Nat Biotechnol. 2019 Apr;37(4):420-423 [PMID: 30778233]
  61. Proteins. 2004 Aug 1;56(2):367-75 [PMID: 15211519]
  62. Evol Appl. 2015 Aug 20;9(1):37-52 [PMID: 27087838]
  63. Genetics. 2004 Mar;166(3):1343-56 [PMID: 15082553]
  64. Nat Struct Biol. 1997 Jul;4(7):559-66 [PMID: 9228949]
  65. Elife. 2017 Nov 01;6: [PMID: 29091025]
  66. Open Biol. 2019 Jan 31;9(1):180232 [PMID: 30958118]
  67. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 [PMID: 11517324]
  68. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10 [PMID: 17517781]
  69. PLoS One. 2013 May 23;8(5):e64125 [PMID: 23717546]
  70. Trends Parasitol. 2006 Jan;22(1):12-6 [PMID: 16310412]
  71. PLoS One. 2012;7(8):e42692 [PMID: 22880084]
  72. Front Plant Sci. 2017 Dec 22;8:2162 [PMID: 29312404]
  73. Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9894-7 [PMID: 27304709]
  74. Appl Microbiol Biotechnol. 2008 May;79(1):1-9 [PMID: 18340446]
  75. Insect Sci. 2008 Feb;15(1):29-43 [PMID: 20485470]
  76. Sci Rep. 2019 Dec 2;9(1):18084 [PMID: 31792250]
  77. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  78. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  79. PLoS Pathog. 2007 Oct 26;3(10):1486-501 [PMID: 17967061]
  80. J Mol Biol. 2000 Mar 31;297(3):771-80 [PMID: 10731427]
  81. Proteins. 2004 Jul 1;56(1):143-56 [PMID: 15162494]
  82. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W590-4 [PMID: 15215457]
  83. Bioorg Khim. 1991 Dec;17(12):1613-32 [PMID: 1815511]
  84. Dev Comp Immunol. 2010 Sep;34(9):953-8 [PMID: 20420852]
  85. Structure. 1995 May 15;3(5):435-48 [PMID: 7663941]
  86. Proteins. 2017 Jun;85(6):1131-1145 [PMID: 28263393]
  87. Protein Sci. 2018 Jan;27(1):129-134 [PMID: 28875543]
  88. PLoS One. 2019 Feb 12;14(2):e0211897 [PMID: 30753230]
  89. Prog Mol Biol Transl Sci. 2010;93:1-17 [PMID: 20807638]
  90. Curr Protoc Bioinformatics. 2014 Sep 08;47:5.6.1-32 [PMID: 25199792]
  91. Nucleic Acids Res. 2018 Jan 4;46(D1):D454-D458 [PMID: 29136213]
  92. PLoS Pathog. 2021 May 28;17(5):e1009615 [PMID: 34048506]
  93. Matrix Biol. 2015 Mar;42:11-55 [PMID: 25701227]
  94. J Pept Res. 2000 Oct;56(4):231-8 [PMID: 11083062]
  95. PLoS Pathog. 2013;9(8):e1003580 [PMID: 24009508]
  96. Blood Rev. 1988 Dec;2(4):251-8 [PMID: 3061531]
  97. J Pept Sci. 2007 Apr;13(4):269-79 [PMID: 17394123]
  98. Mol Ecol. 2014 Feb;23(4):890-901 [PMID: 24383716]
  99. J Exp Biol. 2009 Jul;212(Pt 14):2261-8 [PMID: 19561216]
  100. Nat Struct Biol. 1994 Dec;1(12):853-6 [PMID: 7773772]
  101. Parasitology. 2018 Dec;145(14):1979-1989 [PMID: 29806574]
  102. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  103. BMC Plant Biol. 2010 Aug 02;10:157 [PMID: 20678208]
  104. Biochim Biophys Acta. 2013 Mar;1830(3):2591-9 [PMID: 23201194]
  105. Nucleic Acids Res. 2018 Jan 4;46(D1):D8-D13 [PMID: 29140470]