Process Design for Value-Added Products in a Biorefinery Platform from Agro and Forest Industrial Byproducts.

Nicolás M Clauser, Fernando E Felissia, María C Area, María E Vallejos
Author Information
  1. Nicolás M Clauser: IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCyP), Félix de Azara 1552, Posadas 3300, Argentina.
  2. Fernando E Felissia: IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCyP), Félix de Azara 1552, Posadas 3300, Argentina.
  3. María C Area: IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCyP), Félix de Azara 1552, Posadas 3300, Argentina. ORCID
  4. María E Vallejos: IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCyP), Félix de Azara 1552, Posadas 3300, Argentina. ORCID

Abstract

Agroforestry wastes are industrial byproducts available locally such as eucalyptus sawdust (EUC) and sugarcane bagasse (SCB). These byproducts can be used as lignocellulosic raw materials to produce high-value products. This study is a techno-economic analysis of four potential scenarios to produce polyhydroxybutyrate (PHB) and levulinic acid (LA) from hemicellulosic sugars by a fermentative pathway in a biomass waste biorefinery. Mass and energy balances were developed, and technical and economic assessments were carried out to obtain gas, char, and tar from residual solids from autohydrolysis treatment. It was determined that microbial culture could be an attractive option for added-value product production. More than 1500 t/year of PHB and 2600 t/year of LA could be obtained by the proposed pathways. Microbial and enzymatic conversion of LA from sugars could significantly improve energy consumption on the conversion strategy. The products from solid residual valorization (char and tar) are the most important for economic performance. Finally, a variation in specific variables could mean substantial improvements in the final indicators of the processes, reaching a higher NPV than USD 17 million.

Keywords

References

  1. Bioresour Technol. 2021 Mar;323:124565 [PMID: 33360115]
  2. Bioresour Technol. 2020 Aug;309:123323 [PMID: 32299048]
  3. Biotechnol Bioeng. 1995 Mar 20;45(6):517-23 [PMID: 18623252]
  4. Bioresour Technol. 2014 Jun;162:148-56 [PMID: 24747394]
  5. Bioresour Technol. 2015 Jun;185:368-77 [PMID: 25796067]
  6. Food Res Int. 2017 Oct;100(Pt 1):780-790 [PMID: 28873750]
  7. Front Bioeng Biotechnol. 2021 Feb 10;9:624021 [PMID: 33644018]
  8. Sci Total Environ. 2018 Jun 1;626:762-775 [PMID: 29358145]
  9. Molecules. 2021 Feb 20;26(4): [PMID: 33672774]
  10. Chemosphere. 2021 Dec;284:131371 [PMID: 34323807]
  11. Bioresour Technol. 2020 Sep;311:123536 [PMID: 32448640]
  12. Carbohydr Polym. 2016 Mar 30;139:99-105 [PMID: 26794952]
  13. ACS Synth Biol. 2021 Apr 16;10(4):724-736 [PMID: 33764057]
  14. Bioresour Technol. 2021 Dec;342:125961 [PMID: 34852440]

Grants

  1. 2222018000189600/National Scientific and Technical Research Council

Word Cloud

Created with Highcharts 10.0.0productsLAbyproductsproducepolyhydroxybutyratePHBlevulinicacidsugarsbiorefineryenergyeconomicchartarresidualt/yearconversionAgroforestrywastesindustrialavailablelocallyeucalyptussawdustEUCsugarcanebagasseSCBcanusedlignocellulosicrawmaterialshigh-valuestudytechno-economicanalysisfourpotentialscenarioshemicellulosicfermentativepathwaybiomasswasteMassbalancesdevelopedtechnicalassessmentscarriedobtaingassolidsautohydrolysistreatmentdeterminedmicrobialcultureattractiveoptionadded-valueproductproduction15002600obtainedproposedpathwaysMicrobialenzymaticsignificantlyimproveconsumptionstrategysolidvalorizationimportantperformanceFinallyvariationspecificvariablesmeansubstantialimprovementsfinalindicatorsprocessesreachinghigherNPVUSD17millionProcessDesignValue-AddedProductsBiorefineryPlatformAgroForestIndustrialByproductsprocessdesignvalue-added

Similar Articles

Cited By