Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials.

Nikolaos Politakos
Author Information
  1. Nikolaos Politakos: POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. ORCID

Abstract

3D printing is a manufacturing technique in constant evolution. Day by day, new materials and methods are discovered, making 3D printing continually develop. 3D printers are also evolving, giving us objects with better resolution, faster, and in mass production. One of the areas in 3D printing that has excellent potential is 4D printing. It is a technique involving materials that can react to an environmental stimulus (pH, heat, magnetism, humidity, electricity, and light), causing an alteration in their physical or chemical state and performing another function. Lately, 3D/4D printing has been increasingly used for fabricating materials aiming at drug delivery, scaffolds, bioinks, tissue engineering (soft and hard), synthetic organs, and even printed cells. The majority of the materials used in 3D printing are polymeric. These materials can be of natural origin or synthetic ones of different architectures and combinations. The use of block copolymers can combine the exemplary properties of both blocks to have better mechanics, processability, biocompatibility, and possible stimulus behavior via tunable structures. This review has gathered fundamental aspects of 3D/4D printing for biomaterials, and it shows the advances and applications of block copolymers in the field of biomaterials over the last years.

Keywords

References

  1. Sci Rep. 2017 Jul 4;7(1):4575 [PMID: 28676662]
  2. Biofabrication. 2015 Jun 17;7(3):035003 [PMID: 26081669]
  3. Nat Biotechnol. 2014 Aug;32(8):773-85 [PMID: 25093879]
  4. Soft Matter. 2020 Feb 26;16(8):2141-2148 [PMID: 32016231]
  5. Int J Pharm. 2015 Mar 1;480(1-2):137-42 [PMID: 25596415]
  6. J Funct Biomater. 2019 Aug 07;10(3): [PMID: 31394886]
  7. Biomed Mater. 2021 Feb 26;16(3): [PMID: 33086194]
  8. Adv Mater. 2010 Feb 9;22(6):673-85 [PMID: 20217769]
  9. ACS Macro Lett. 2018 Oct 16;7(10):1254-1260 [PMID: 31649829]
  10. J Mech Behav Biomed Mater. 2019 Dec;100:103390 [PMID: 31563081]
  11. J Mater Chem B. 2017 Dec 28;5(48):9514-9521 [PMID: 32264566]
  12. Small Methods. 2018 Feb 13;2(2): [PMID: 30090851]
  13. Materials (Basel). 2021 Jun 08;14(12): [PMID: 34201163]
  14. Chem Rev. 2017 Aug 9;117(15):10212-10290 [PMID: 28756658]
  15. Gels. 2021 Jun 24;7(3): [PMID: 34202652]
  16. Front Bioeng Biotechnol. 2020 Nov 04;8:586406 [PMID: 33251199]
  17. Tissue Eng Part C Methods. 2016 Mar;22(3):173-88 [PMID: 26592915]
  18. Bioengineering (Basel). 2018 Nov 14;5(4): [PMID: 30441879]
  19. Biomed Mater. 2020 Apr 15;15(3):035015 [PMID: 32032966]
  20. Soft Matter. 2008 Feb 21;4(3):435-449 [PMID: 32907201]
  21. Tissue Eng. 2005 Nov-Dec;11(11-12):1817-23 [PMID: 16411827]
  22. Int J Bioprint. 2021 Jun 29;7(3):389 [PMID: 34286155]
  23. Biofabrication. 2013 Dec;5(4):045007 [PMID: 24192236]
  24. Int J Artif Organs. 2017 May 9;40(4):176-184 [PMID: 28165584]
  25. Adv Mater. 2020 Apr;32(17):e1907142 [PMID: 32129917]
  26. Biofabrication. 2017 Jan 04;9(1):015007 [PMID: 28052044]
  27. Sci Adv. 2017 Dec 08;3(12):eaao5496 [PMID: 29230437]
  28. Biotechnol Adv. 2016 Jul-Aug;34(4):422-434 [PMID: 26724184]
  29. Front Bioeng Biotechnol. 2019 Jul 09;7:164 [PMID: 31338366]
  30. Front Bioeng Biotechnol. 2019 Oct 16;7:266 [PMID: 31750293]
  31. Nature. 2016 Dec 14;540(7633):371-378 [PMID: 27974748]
  32. Curr Opin Biotechnol. 2016 Aug;40:103-112 [PMID: 27043763]
  33. Biomaterials. 2010 Aug;31(24):6121-30 [PMID: 20478613]
  34. J Biosci Bioeng. 2013 Aug;116(2):224-30 [PMID: 23562089]
  35. J Mater Chem B. 2013 Dec 28;1(48):6619-6626 [PMID: 32261270]
  36. Biomacromolecules. 2016 Jun 13;17(6):2137-2147 [PMID: 27171342]
  37. Acta Biomater. 2008 Nov;4(6):1603-10 [PMID: 18595787]
  38. Biofabrication. 2015 Aug 11;7(3):035006 [PMID: 26260872]
  39. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  40. ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4856-64 [PMID: 23659570]
  41. J Biomed Mater Res A. 2013 May;101(5):1255-64 [PMID: 23015540]
  42. Arthritis Res Ther. 2003;5(1):32-45 [PMID: 12716446]
  43. MRS Commun. 2021;11(5):539-553 [PMID: 34367725]
  44. Biomed Eng Online. 2011 Mar 07;10:19 [PMID: 21385332]
  45. Macromol Rapid Commun. 2012 Nov 23;33(22):1898-920 [PMID: 22961764]
  46. Biomaterials. 2009 Apr;30(12):2164-74 [PMID: 19176247]
  47. ACS Appl Mater Interfaces. 2018 Mar 28;10(12):9969-9979 [PMID: 29451384]
  48. Biofabrication. 2014 Sep;6(3):035001 [PMID: 24722236]
  49. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11703-11708 [PMID: 27671641]
  50. Carbohydr Polym. 2016 Sep 20;149:163-74 [PMID: 27261741]
  51. PLoS One. 2013;8(3):e57741 [PMID: 23469227]
  52. Biofabrication. 2018 May 11;10(3):034101 [PMID: 29693552]
  53. Biofabrication. 2013 Mar;5(1):015001 [PMID: 23172542]
  54. Biofabrication. 2016 Jan 08;8(1):013001 [PMID: 26744832]
  55. Macromol Chem Phys. 2014 Dec;215(24):2482-2490 [PMID: 26457046]
  56. Macromol Biosci. 2021 Aug;21(8):e2100123 [PMID: 34128589]
  57. Int J Bioprint. 2021 Aug 27;7(4):397 [PMID: 34805591]
  58. J Control Release. 2021 Jul 10;335:290-305 [PMID: 34044092]
  59. Biomaterials. 2012 May;33(15):3824-34 [PMID: 22365811]
  60. Biofabrication. 2011 Jun;3(2):025001 [PMID: 21527813]
  61. Biomacromolecules. 2020 Feb 10;21(2):388-396 [PMID: 31566357]
  62. Adv Healthc Mater. 2020 Aug;9(15):e1901648 [PMID: 32352649]
  63. Polymers (Basel). 2020 Aug 07;12(8): [PMID: 32784562]
  64. ACS Appl Mater Interfaces. 2018 May 30;10(21):17489-17507 [PMID: 29742896]
  65. Biomacromolecules. 2018 Jul 9;19(7):2691-2699 [PMID: 29665336]
  66. Biomicrofluidics. 2011 Jun;5(2):22207 [PMID: 21799713]
  67. Sci Adv. 2021 Feb 3;7(6): [PMID: 33536222]
  68. Acta Biomater. 2013 Jul;9(7):7218-26 [PMID: 23523536]
  69. Adv Mater. 2013 Sep 25;25(36):5011-28 [PMID: 24038336]
  70. Nature. 2009 May 7;459(7243):68-72 [PMID: 19424152]
  71. Chem Soc Rev. 2014 Dec 7;43(23):8114-31 [PMID: 25144925]
  72. J Mater Chem B. 2015 Dec 14;3(46):9067-9078 [PMID: 32263038]
  73. Chem Soc Rev. 2019 Jul 29;48(15):4049-4086 [PMID: 31271159]
  74. Nanotechnology. 2014 Apr 11;25(14):145101 [PMID: 24632802]
  75. Biofabrication. 2010 Mar;2(1):014101 [PMID: 20811116]
  76. Science. 2015 Mar 20;347(6228):1349-52 [PMID: 25780246]

Word Cloud

Created with Highcharts 10.0.0printing3Dmaterialscan3D/4Dblockcopolymersbiomaterialstechniquebetter4DstimulususedscaffoldstissueengineeringsyntheticmanufacturingconstantevolutionDaydaynewmethodsdiscoveredmakingcontinuallydevelopprintersalsoevolvinggivingusobjectsresolutionfastermassproductionOneareasexcellentpotentialinvolvingreactenvironmentalpHheatmagnetismhumidityelectricitylightcausingalterationphysicalchemicalstateperforminganotherfunctionLatelyincreasinglyfabricatingaimingdrugdeliverybioinkssofthardorgansevenprintedcellsmajoritypolymericnaturaloriginonesdifferentarchitecturescombinationsusecombineexemplarypropertiesblocksmechanicsprocessabilitybiocompatibilitypossiblebehaviorviatunablestructuresreviewgatheredfundamentalaspectsshowsadvancesapplicationsfieldlastyearsBlockCopolymersPrinting:AdvancesApplicationsBiomaterials

Similar Articles

Cited By