An RNA-Based Vaccine Platform for Use against .

Sasha E Larsen, Jesse H Erasmus, Valerie A Reese, Tiffany Pecor, Jacob Archer, Amit Kandahar, Fan-Chi Hsu, Katrina Nicholes, Steven G Reed, Susan L Baldwin, Rhea N Coler
Author Information
  1. Sasha E Larsen: Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA. ORCID
  2. Jesse H Erasmus: HDT BioCorp, Seattle, WA 98102, USA. ORCID
  3. Valerie A Reese: Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA. ORCID
  4. Tiffany Pecor: Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA.
  5. Jacob Archer: HDT BioCorp, Seattle, WA 98102, USA.
  6. Amit Kandahar: HDT BioCorp, Seattle, WA 98102, USA.
  7. Fan-Chi Hsu: Hematologics Inc., Seattle, WA 98121, USA.
  8. Katrina Nicholes: HDT BioCorp, Seattle, WA 98102, USA.
  9. Steven G Reed: HDT BioCorp, Seattle, WA 98102, USA.
  10. Susan L Baldwin: Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA.
  11. Rhea N Coler: Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, WA 98109, USA.

Abstract

(M.tb), a bacterial pathogen that causes tuberculosis disease (TB), exerts an extensive burden on global health. The complex nature of M.tb, coupled with different TB disease stages, has made identifying immune correlates of protection challenging and subsequently slowing vaccine candidate progress. In this work, we leveraged two delivery platforms as prophylactic vaccines to assess immunity and subsequent efficacy against low-dose and ultra-low-dose aerosol challenges with M.tb H37Rv in C57BL/6 mice. Our second-generation TB vaccine candidate ID91 was produced as a fusion protein formulated with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion) or as a novel replicating-RNA (repRNA) formulated in a nanostructured lipid carrier. Protein subunit- and RNA-based vaccines preferentially elicit cellular immune responses to different ID91 epitopes. In a single prophylactic immunization screen, both platforms reduced pulmonary bacterial burden compared to the controls. Excitingly, in prime-boost strategies, the groups that received heterologous RNA-prime, protein-boost or combination immunizations demonstrated the greatest reduction in bacterial burden and a unique humoral and cellular immune response profile. These data are the first to report that repRNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing CD4+ and CD8+ T-cell epitopes.

Keywords

References

  1. Nat Med. 2003 Jan;9(1):33-9 [PMID: 12496961]
  2. Front Immunol. 2017 Oct 05;8:1262 [PMID: 29051764]
  3. J Immunol. 2000 Jul 1;165(1):353-63 [PMID: 10861072]
  4. Nature. 2021 Dec;600(7890):580-583 [PMID: 34916666]
  5. Vaccine. 2015 Nov 27;33(48):6570-8 [PMID: 26541135]
  6. N Engl J Med. 2018 Oct 25;379(17):1621-1634 [PMID: 30280651]
  7. Cell Syst. 2021 Nov 17;12(11):1046-1063.e7 [PMID: 34469743]
  8. Lancet. 2013 Mar 23;381(9871):1021-8 [PMID: 23391465]
  9. Adv Exp Med Biol. 2013;783:141-63 [PMID: 23468108]
  10. Semin Immunopathol. 2015 May;37(3):239-49 [PMID: 25917388]
  11. Infect Immun. 2001 Jul;69(7):4320-8 [PMID: 11401969]
  12. Indian J Tuberc. 2021 Jan;68(1):106-113 [PMID: 33641829]
  13. Cold Spring Harb Perspect Med. 2014 May 22;4(7):a018465 [PMID: 24852051]
  14. Am J Respir Crit Care Med. 2002 Oct 15;166(8):1116-21 [PMID: 12379557]
  15. Cell Rep. 2021 Sep 14;36(11):109696 [PMID: 34525366]
  16. J Immunol. 2008 Dec 1;181(11):7948-57 [PMID: 19017986]
  17. BMJ. 2014 Aug 05;349:g4643 [PMID: 25097193]
  18. Cell Immunol. 1984 Mar;84(1):113-20 [PMID: 6421492]
  19. Lancet Glob Health. 2016 Nov;4(11):e816-e826 [PMID: 27720689]
  20. Sci Transl Med. 2020 Aug 5;12(555): [PMID: 32690628]
  21. J Clin Invest. 2007 Aug;117(8):2092-4 [PMID: 17671648]
  22. J Immunol. 2014 Sep 15;193(6):2911-8 [PMID: 25086172]
  23. J Exp Med. 2004 Dec 6;200(11):1479-89 [PMID: 15557351]
  24. J Control Release. 2014 Mar 10;177:20-6 [PMID: 24382398]
  25. NPJ Vaccines. 2017;2: [PMID: 28775896]
  26. Infect Immun. 2004 Nov;72(11):6324-9 [PMID: 15501761]
  27. Am J Respir Crit Care Med. 2010 Apr 15;181(8):862-72 [PMID: 20019338]
  28. Mol Ther. 2018 Oct 3;26(10):2507-2522 [PMID: 30078765]
  29. Sci Rep. 2021 Apr 27;11(1):9040 [PMID: 33907221]
  30. J Control Release. 2021 May 10;333:511-520 [PMID: 33798667]
  31. Expert Opin Ther Pat. 2022 Mar;32(3):243-260 [PMID: 34846976]
  32. Nature. 2020 Oct;586(7830):589-593 [PMID: 32785213]
  33. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  34. Lancet Infect Dis. 2007 May;7(5):328-37 [PMID: 17448936]
  35. Math Biosci Eng. 2021 Nov 22;19(1):873-891 [PMID: 34903017]
  36. Infect Immun. 1998 Feb;66(2):830-4 [PMID: 9453650]
  37. Lancet Respir Med. 2021 Apr;9(4):373-386 [PMID: 33306991]
  38. Eur J Immunol. 2003 Dec;33(12):3293-302 [PMID: 14635037]
  39. N Engl J Med. 2021 Feb 4;384(5):403-416 [PMID: 33378609]
  40. Expert Rev Vaccines. 2015 Feb;14(2):177-94 [PMID: 25269775]
  41. N Engl J Med. 2019 Dec 19;381(25):2429-2439 [PMID: 31661198]
  42. Vaccines (Basel). 2020 Oct 05;8(4): [PMID: 33027958]
  43. Nat Immunol. 2021 Dec;22(12):1515-1523 [PMID: 34811542]
  44. Infect Immun. 1987 Sep;55(9):2037-41 [PMID: 3114143]
  45. Lancet Glob Health. 2016 Nov;4(11):e806-e815 [PMID: 27720688]
  46. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12210-5 [PMID: 11035787]
  47. mBio. 2019 Nov 26;10(6): [PMID: 31772048]
  48. N Engl J Med. 2020 Dec 17;383(25):2427-2438 [PMID: 32991794]
  49. Annu Rev Immunol. 2001;19:93-129 [PMID: 11244032]
  50. Acta Biomater. 2021 Sep 1;131:16-40 [PMID: 34153512]
  51. J Immunol. 2013 Sep 1;191(5):2514-2525 [PMID: 23904160]
  52. Vaccines (Basel). 2018 May 24;6(2): [PMID: 29795025]
  53. Acta Biomed. 2020 Mar 19;91(1):157-160 [PMID: 32191675]
  54. Infect Immun. 2000 Dec;68(12):7144-8 [PMID: 11083843]
  55. Tuberculosis (Edinb). 2021 Jan;126:102040 [PMID: 33310626]
  56. Front Immunol. 2018 Nov 29;9:2778 [PMID: 30555469]
  57. Sci Transl Med. 2010 Oct 13;2(53):53ra74 [PMID: 20944089]
  58. Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0141221 [PMID: 34570644]
  59. Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3238-E3245 [PMID: 29563223]
  60. PLoS One. 2011 Jan 26;6(1):e16333 [PMID: 21298114]
  61. J Immunol. 2004 Nov 15;173(10):6357-65 [PMID: 15528375]
  62. J Health Popul Nutr. 2010 Apr;28(2):111-3 [PMID: 20411672]
  63. Nat Med. 2019 Jun;25(6):977-987 [PMID: 31110348]
  64. N Engl J Med. 2020 Dec 31;383(27):2603-2615 [PMID: 33301246]
  65. Expert Rev Vaccines. 2007 Jun;6(3):441-56 [PMID: 17542758]

Grants

  1. R01 AI125160/NIAID NIH HHS
  2. MR/R005850/1/Medical Research Council
  3. T32A1075090/National Institute of Allergy and Infectious Diseases
  4. R01AI125160/National Institute of Allergy and Infectious Diseases

Word Cloud

Created with Highcharts 10.0.0MtbTBbacterialtuberculosisburdenimmunevaccineplatformsvaccinesID91lipidrepRNAdiseasedifferentcandidateprophylacticformulatednanostructuredcarriercellularepitopespathogencausesexertsextensiveglobalhealthcomplexnaturecoupledstagesmadeidentifyingcorrelatesprotectionchallengingsubsequentlyslowingprogressworkleveragedtwodeliveryassessimmunitysubsequentefficacylow-doseultra-low-doseaerosolchallengesH37RvC57BL/6micesecond-generationproducedfusionproteinsyntheticTLR4agonistglucopyranosyladjuvantstableemulsionnovelreplicating-RNAProteinsubunit-RNA-basedpreferentiallyelicitresponsessingleimmunizationscreenreducedpulmonarycomparedcontrolsExcitinglyprime-booststrategiesgroupsreceivedheterologousRNA-primeprotein-boostcombinationimmunizationsdemonstratedgreatestreductionuniquehumoralresponseprofiledatafirstreportviablesystempursuedhigh-priorityantigenscontainingCD4+CD8+T-cellRNA-BasedVaccinePlatformUseGLA-SEMycobacterium

Similar Articles

Cited By