Alarm communication predates eusociality in termites.

David Sillam-Dussès, Vojtěch Jandák, Petr Stiblik, Olivier Delattre, Thomas Chouvenc, Ondřej Balvín, Josef Cvačka, Delphine Soulet, Jiří Synek, Marek Brothánek, Ondřej Jiříček, Michael S Engel, Thomas Bourguignon, Jan Šobotník
Author Information
  1. David Sillam-Dussès: University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France.
  2. Vojtěch Jandák: Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic.
  3. Petr Stiblik: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic.
  4. Olivier Delattre: University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France.
  5. Thomas Chouvenc: Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Fort Lauderdale, Florida, 33314, USA.
  6. Ondřej Balvín: Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic.
  7. Josef Cvačka: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic. ORCID
  8. Delphine Soulet: University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France.
  9. Jiří Synek: Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic.
  10. Marek Brothánek: Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic. ORCID
  11. Ondřej Jiříček: Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic.
  12. Michael S Engel: Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive-Suite 140, University of Kansas, Lawrence, Kansas, 66045, USA. msengel@ku.edu. ORCID
  13. Thomas Bourguignon: Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic.
  14. Jan Šobotník: Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic. sobotnik@ftz.czu.cz. ORCID

Abstract

Termites (Blattodea: Isoptera) have evolved specialized defensive strategies for colony protection. Alarm communication enables workers to escape threats while soldiers are recruited to the source of disturbance. Here, we study the vibroacoustic and chemical alarm communication in the wood roach Cryptocercus and in 20 termite species including seven of the nine termite families, all life-types, and all feeding and nesting habits. Our multidisciplinary approach shows that vibratory alarm signals represent an ethological synapomorphy of termites and Cryptocercus. In contrast, chemical alarms have evolved independently in several cockroach groups and at least twice in termites. Vibroacoustic alarm signaling patterns are the most complex in Neoisoptera, in which they are often combined with chemical signals. The alarm characters correlate to phylogenetic position, food type and hardness, foraging area size, and nesting habits. Overall, species of Neoisoptera have developed the most sophisticated communication system amongst termites, potentially contributing to their ecological success.

References

  1. Curr Biol. 2019 Mar 18;29(6):R209-R212 [PMID: 30889392]
  2. PLoS One. 2012;7(4):e36375 [PMID: 22558452]
  3. Vitam Horm. 2010;83:215-39 [PMID: 20831948]
  4. Biol Rev Camb Philos Soc. 1996 Feb;71(1):27-79 [PMID: 8603120]
  5. Proc Biol Sci. 2009 Nov 22;276(1675):4035-41 [PMID: 19710058]
  6. J Theor Biol. 2000 Feb 7;202(3):195-204 [PMID: 10660474]
  7. J Insect Physiol. 2010 Sep;56(9):1012-21 [PMID: 20223240]
  8. Proc Biol Sci. 2020 Jun 10;287(1928):20200780 [PMID: 32517622]
  9. J Chem Ecol. 2002 Aug;28(8):1629-40 [PMID: 12371815]
  10. J Chem Ecol. 1990 Oct;16(10):2865-75 [PMID: 24263260]
  11. Syst Biol. 2015 Jan;64(1):127-36 [PMID: 25209222]
  12. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3732-7 [PMID: 15734796]
  13. Science. 2012 Jul 27;337(6093):436 [PMID: 22837520]
  14. Curr Biol. 2000 Jun 29;10(13):801-4 [PMID: 10898984]
  15. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6506-6511 [PMID: 29784790]
  16. Biol Lett. 2007 Jun 22;3(3):331-5 [PMID: 17412673]
  17. Ecol Evol. 2020 Jun 07;10(12):5892-5898 [PMID: 32607198]
  18. Ecol Evol. 2020 Jun 02;10(13):6775-6784 [PMID: 32724550]
  19. Mol Biol Evol. 2015 Feb;32(2):406-21 [PMID: 25389205]
  20. J Chem Ecol. 2017 Mar;43(3):225-235 [PMID: 28247150]
  21. Proc Biol Sci. 1994 May 23;256(1346):203-9 [PMID: 8029243]
  22. Cell Mol Life Sci. 2021 Mar;78(6):2749-2769 [PMID: 33388854]
  23. Mol Biol Evol. 2016 Mar;33(3):809-19 [PMID: 26609080]
  24. Evolution. 2014 May;68(5):1415-25 [PMID: 24433406]
  25. Curr Biol. 2019 Nov 4;29(21):3728-3734.e4 [PMID: 31630948]
  26. Naturwissenschaften. 1999 Nov;86(11):544-8 [PMID: 10551951]
  27. Sci Rep. 2020 Jun 11;10(1):9462 [PMID: 32528013]
  28. Biol Rev Camb Philos Soc. 2020 Jun;95(3):555-572 [PMID: 31876057]
  29. Mol Biol Evol. 2017 Mar 1;34(3):589-597 [PMID: 28025274]
  30. Cell. 2016 Mar 10;164(6):1277-1287 [PMID: 26967293]
  31. J Chem Ecol. 2008 Apr;34(4):478-86 [PMID: 18386097]
  32. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  33. Nature. 1975 Nov 20;258(5532):230-1 [PMID: 1238905]
  34. J Chem Ecol. 1983 Jan;9(1):143-58 [PMID: 24408627]
  35. Science. 1980 Nov 14;210(4471):801-3 [PMID: 7433999]
  36. Naturwissenschaften. 2010 May;97(5):495-503 [PMID: 20352178]
  37. Biol Open. 2015 Nov 04;4(12):1649-59 [PMID: 26538635]

MeSH Term

Humans
Animals
Phylogeny
Isoptera
Cockroaches
Communication
Ethology

Word Cloud

Created with Highcharts 10.0.0communicationalarmtermiteschemicalevolvedAlarmCryptocercustermitespeciesnestinghabitssignalsNeoisopteraTermitesBlattodea:Isopteraspecializeddefensivestrategiescolonyprotectionenablesworkersescapethreatssoldiersrecruitedsourcedisturbancestudyvibroacousticwoodroach20includingsevenninefamilieslife-typesfeedingmultidisciplinaryapproachshowsvibratoryrepresentethologicalsynapomorphycontrastalarmsindependentlyseveralcockroachgroupsleasttwiceVibroacousticsignalingpatternscomplexoftencombinedcharacterscorrelatephylogeneticpositionfoodtypehardnessforagingareasizeOveralldevelopedsophisticatedsystemamongstpotentiallycontributingecologicalsuccesspredateseusociality

Similar Articles

Cited By