Agrochemical contaminants in six species of edible insects from Uganda and Kenya.

Simon Labu, Sevgan Subramanian, Xavier Cheseto, Perpetra Akite, Patrice Kasangaki, Moses Chemurot, Chrysantus M Tanga, Daisy Salifu, James P Egonyu
Author Information
  1. Simon Labu: International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
  2. Sevgan Subramanian: International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
  3. Xavier Cheseto: International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
  4. Perpetra Akite: Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
  5. Patrice Kasangaki: National Livestock Resources Research Institute, P. O. Box 5704, Kampala, Uganda.
  6. Moses Chemurot: Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
  7. Chrysantus M Tanga: International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
  8. Daisy Salifu: International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
  9. James P Egonyu: International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.

Abstract

Edible insects are currently promoted worldwide as an alternative animal protein source, but they are mostly still harvested from the wild where they are predisposed to contamination with agrochemicals. This study analysed six species of edible insects ( sp, and sp) collected from different habitats and/or reared in the laboratory in Kenya and Uganda for safety from agrochemical contaminants using liquid chromatography tandem mass spectrometry. The residue levels were statistically compared with the Codex Alimentarius Commission maximum residue limits (MRLs). Residues of only nine agrochemicals were detected in the insects out of 374 chemicals which were screened. The detected agrochemicals include two insecticides (aminocarb and pymetrozine), three herbicides (atraton, methabenzthiazuron and metazachlor) and four fungicides (carboxin, fenpropimorph, fludioxonil and metalaxyl). and adult sp were free from detectable levels of any agrochemical. Whereas the pesticides residue levels in most insect samples were within maximum residue limits, some of them notably from black soldier fly larval frass, from oil palm and from plant compost contained 2-, 8- and 49-fold higher levels of atraton, methabenzthiazuron and metazachlor, respectively, than MRLs. These findings demonstrate that edible insects may accumulate harmful residues of agrochemicals from the environment where they breed or forage, rendering them unsafe for human consumption or feeding animals. The mechanisms for possible bioaccumulation of these agrochemicals in the insects remains to be investigated. Development of methods for farming edible insects under regulated indoor conditions to ensure their safety as sources of food or feed is recommended.

Keywords

References

  1. J Econ Entomol. 2020 Oct 16;113(5):2150-2162 [PMID: 33063829]
  2. Front Nutr. 2021 Jan 12;7:537915 [PMID: 33511150]
  3. Environ Monit Assess. 2010 Jun;165(1-4):685-92 [PMID: 19496002]
  4. Foods. 2022 Apr 05;11(7): [PMID: 35407134]
  5. J Chem Ecol. 2002 May;28(5):1065-74 [PMID: 12049227]
  6. Environ Pollut. 2012 Sep;168:29-36 [PMID: 22591787]
  7. Environ Pollut. 2000 Nov;110(2):331-44 [PMID: 15092847]
  8. Toxicol Lett. 2008 Aug 15;180(2):137-50 [PMID: 18585444]
  9. Crit Rev Food Sci Nutr. 2020;60(21):3622-3641 [PMID: 31858819]
  10. Toxins (Basel). 2017 Jun 02;9(6): [PMID: 28574433]
  11. Compr Rev Food Sci Food Saf. 2018 Sep;17(5):1172-1183 [PMID: 33350154]
  12. Food Chem Toxicol. 2017 Feb;100:70-79 [PMID: 28007452]
  13. Foods. 2020 Jun 18;9(6): [PMID: 32570724]
  14. Ecol Evol. 2019 Feb 28;9(7):3899-3908 [PMID: 31015975]
  15. J Environ Sci (China). 2014 Apr 1;26(4):757-64 [PMID: 25079405]
  16. Pest Manag Sci. 2011 Feb;67(2):146-55 [PMID: 20960465]
  17. J Insect Sci. 2008;8:1-11 [PMID: 20302545]
  18. Sci Total Environ. 2018 Aug 15;633:728-737 [PMID: 29602111]
  19. Chirality. 2002 Jan;14(1):32-8 [PMID: 11748798]
  20. Curr Opin Insect Sci. 2021 Dec;48:64-71 [PMID: 34649017]
  21. Ecotoxicol Environ Saf. 2021 May;214:112094 [PMID: 33677382]
  22. J Food Prot. 2021 Sep 1;84(9):1575-1581 [PMID: 33956957]
  23. Environ Sci Technol. 2020 Oct 20;54(20):13008-13015 [PMID: 32936619]

Word Cloud

Created with Highcharts 10.0.0insectsagrochemicalsresidueediblelevelsspsafetycontaminantslimitssixspeciesKenyaUgandaagrochemicalmaximumMRLsdetectedatratonmethabenzthiazuronmetazachlorEdiblecurrentlypromotedworldwidealternativeanimalproteinsourcemostlystillharvestedwildpredisposedcontaminationstudyanalysedcollecteddifferenthabitatsand/orrearedlaboratoryusingliquidchromatographytandemmassspectrometrystatisticallycomparedCodexAlimentariusCommissionResiduesnine374chemicalsscreenedincludetwoinsecticidesaminocarbpymetrozinethreeherbicidesfourfungicidescarboxinfenpropimorphfludioxonilmetalaxyladultfreedetectableWhereaspesticidesinsectsampleswithinnotablyblacksoldierflylarvalfrassoilpalmplantcompostcontained2-8-49-foldhigherrespectivelyfindingsdemonstratemayaccumulateharmfulresiduesenvironmentbreedforagerenderingunsafehumanconsumptionfeedinganimalsmechanismspossiblebioaccumulationremainsinvestigatedDevelopmentmethodsfarmingregulatedindoorconditionsensuresourcesfoodfeedrecommendedAgrochemicalChemicalEnvironmentFoodMaximumPesticides

Similar Articles

Cited By