Contemplation on wheat vernalization.

Zbyněk Milec, Beáta Strejčková, Jan Šafář
Author Information
  1. Zbyněk Milec: Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia.
  2. Beáta Strejčková: Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia.
  3. Jan Šafář: Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia.

Abstract

Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the () gene as a key player in the vernalization response. belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss allelic variation, review vernalization models, talk copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.

Keywords

References

  1. Plant Cell. 2022 Mar 4;34(3):1020-1037 [PMID: 34931682]
  2. PLoS Genet. 2017 Jul 31;13(7):e1006939 [PMID: 28759577]
  3. Proc Natl Acad Sci U S A. 2009 May 19;106(20):8386-91 [PMID: 19416817]
  4. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6263-8 [PMID: 12730378]
  5. Genetics. 1966 Mar;53(3):487-98 [PMID: 17248295]
  6. Science. 2004 Mar 12;303(5664):1640-4 [PMID: 15016992]
  7. BMC Plant Biol. 2016 Jan 27;16 Suppl 1:9 [PMID: 26822192]
  8. Int J Mol Sci. 2021 Nov 13;22(22): [PMID: 34830166]
  9. N Biotechnol. 2016 Sep 25;33(5 Pt B):718-727 [PMID: 26899284]
  10. BMC Plant Biol. 2020 Oct 14;20(Suppl 1):175 [PMID: 33050875]
  11. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6623-6628 [PMID: 28584114]
  12. PLoS Biol. 2007 May;5(5):e129 [PMID: 17439305]
  13. Nature. 1948 May 29;161(4100):859 [PMID: 18862138]
  14. Theor Appl Genet. 2020 Jun;133(6):1825-1838 [PMID: 32016554]
  15. Science. 2011 Jan 7;331(6013):76-9 [PMID: 21127216]
  16. BMC Plant Biol. 2010 Aug 11;10:168 [PMID: 20699006]
  17. Theor Appl Genet. 2014 Jan;127(1):1-18 [PMID: 23989647]
  18. Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):E5401-10 [PMID: 26324889]
  19. Dev Cell. 2017 Feb 6;40(3):302-312.e4 [PMID: 28132848]
  20. Planta. 2003 Jun;217(2):261-70 [PMID: 12783334]
  21. Mol Genet Genomics. 2010 Mar;283(3):223-32 [PMID: 20063107]
  22. Theor Appl Genet. 2002 Mar;104(4):571-576 [PMID: 12582660]
  23. Mol Plant. 2022 Aug 1;15(8):1300-1309 [PMID: 35754174]
  24. BMC Plant Biol. 2013 Dec 05;13:199 [PMID: 24314021]
  25. Plant Mol Biol. 2006 Mar;60(4):469-80 [PMID: 16525885]
  26. PLoS One. 2012;7(3):e33234 [PMID: 22457747]
  27. Plant Physiol. 2019 Jul;180(3):1436-1449 [PMID: 31061102]
  28. Theor Appl Genet. 2012 Dec;125(8):1697-704 [PMID: 22875177]
  29. PLoS One. 2011;6(6):e21513 [PMID: 21713009]
  30. Theor Appl Genet. 2004 Nov;109(8):1677-86 [PMID: 15480533]
  31. Planta. 2019 Dec;250(6):1955-1965 [PMID: 31529399]
  32. Plant Physiol. 2003 Aug;132(4):1849-60 [PMID: 12913142]
  33. Mol Plant. 2021 Sep 6;14(9):1525-1538 [PMID: 34052392]
  34. Mol Genet Genomics. 2013 Jun;288(5-6):261-75 [PMID: 23591592]
  35. PLoS Genet. 2012;8(12):e1003134 [PMID: 23271982]
  36. Nat Commun. 2014 Aug 05;5:4572 [PMID: 25091017]
  37. Mol Genet Genomics. 2005 Mar;273(1):54-65 [PMID: 15690172]
  38. Plant Cell. 2004 Oct;16(10):2553-9 [PMID: 15466409]
  39. Planta. 2021 May 31;253(6):132 [PMID: 34059984]
  40. Plant J. 2013 Dec;76(5):742-53 [PMID: 24033823]
  41. Theor Appl Genet. 2008 Feb;116(3):383-94 [PMID: 18040656]
  42. Curr Opin Plant Biol. 2009 Apr;12(2):178-84 [PMID: 19195924]
  43. Annu Rev Plant Biol. 2008;59:573-94 [PMID: 18444908]
  44. PLoS One. 2011;6(12):e29456 [PMID: 22242122]
  45. BMC Genomics. 2017 Oct 31;18(1):838 [PMID: 29089022]
  46. Science. 2000 Aug 4;289(5480):768-71 [PMID: 10926537]
  47. Trends Genet. 2011 Nov;27(11):454-64 [PMID: 21794944]
  48. BMC Genet. 2015 Jul 29;16:96 [PMID: 26219856]
  49. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):13099-104 [PMID: 14557548]
  50. Biomolecules. 2021 Dec 17;11(12): [PMID: 34944541]
  51. Theor Appl Genet. 2018 Oct;131(10):2037-2053 [PMID: 29961103]
  52. Genes Genet Syst. 2007 Apr;82(2):167-70 [PMID: 17507783]
  53. Nat Commun. 2022 May 20;13(1):2838 [PMID: 35595749]
  54. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7 [PMID: 17043231]
  55. Science. 2007 May 18;316(5827):1030-3 [PMID: 17446353]
  56. PLoS Genet. 2022 Apr 25;18(4):e1010157 [PMID: 35468125]
  57. Plant J. 2018 Mar;93(5):871-882 [PMID: 29314414]
  58. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19581-6 [PMID: 17158798]
  59. Plant J. 2007 Aug;51(4):670-80 [PMID: 17587304]
  60. Sci Rep. 2022 Oct 14;12(1):17224 [PMID: 36241895]
  61. Genetics. 2006 Sep;174(1):421-37 [PMID: 16816429]
  62. Science. 2007 Jun 29;316(5833):1862-6 [PMID: 17600208]
  63. BMC Plant Biol. 2015 Mar 31;15:94 [PMID: 25888295]
  64. Nat Commun. 2021 Apr 16;12(1):2303 [PMID: 33863881]
  65. Nat Rev Genet. 2009 Aug;10(8):551-64 [PMID: 19597530]
  66. Front Plant Sci. 2022 Jul 15;13:942461 [PMID: 36420025]
  67. Plant Physiol. 2009 Jan;149(1):245-57 [PMID: 19005084]
  68. G3 (Bethesda). 2011 Dec;1(7):637-45 [PMID: 22384375]
  69. Theor Appl Genet. 1995 Jun;90(7-8):1174-9 [PMID: 24173081]
  70. PLoS Genet. 2020 Jul 13;16(7):e1008812 [PMID: 32658893]
  71. Theor Appl Genet. 2007 Sep;115(5):721-33 [PMID: 17634915]
  72. Front Plant Sci. 2015 Jul 01;6:470 [PMID: 26191066]
  73. BMC Plant Biol. 2016 Nov 16;16(Suppl 3):236 [PMID: 28105942]
  74. Plant Signal Behav. 2015;10(3):e990799 [PMID: 25648822]
  75. Plant J. 2009 May;58(4):668-81 [PMID: 19175767]
  76. Nature. 2006 Jul 6;442(7098):86-90 [PMID: 16728976]

Word Cloud

Created with Highcharts 10.0.0vernalizationwheatmechanismvariationplantsresearchcopynumberdevernalizationVernalizationperiodlownon-freezingtemperaturesprovidescompetenceflowerensuressownwinterdevelopreproductiveorgansfavourableconditionsspringevolutionaryevolvedmonocoteudicotStudiesmonocotsrepresentedtemperatecerealslikebarleyidentifiedproposedgenekeyplayerresponsebelongsMADS-boxtranscriptionfactorsexpressedleavesapicalmeristemsubsequentlypromotesfloweringDespitesubstantialadvancementlasttwodecadesstillgapsunderstandingsummarisepresentknowledgediscussallelicreviewmodelstalkphenomenonFinallysuggestpossiblefuturedirectionsContemplationVRNchromatinmethylation

Similar Articles

Cited By