Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia.

Siddharth Ramanan, Hashim El-Omar, Daniel Roquet, Rebekah M Ahmed, John R Hodges, Olivier Piguet, Matthew A Lambon Ralph, Muireann Irish
Author Information
  1. Siddharth Ramanan: Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK.
  2. Hashim El-Omar: Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
  3. Daniel Roquet: Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
  4. Rebekah M Ahmed: Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia. ORCID
  5. John R Hodges: Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
  6. Olivier Piguet: Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia. ORCID
  7. Matthew A Lambon Ralph: Medical Research Council Cognition and Brain Sciences Unit, The University of Cambridge, Cambridge CB3 1AU, UK. ORCID
  8. Muireann Irish: Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia. ORCID

Abstract

Two common clinical variants of frontotemporal dementia are the behavioural variant frontotemporal dementia, presenting with behavioural and personality changes attributable to prefrontal atrophy, and semantic dementia, displaying early semantic dysfunction primarily due to anterior temporal degeneration. Despite representing independent diagnostic entities, mounting evidence indicates overlapping cognitive-behavioural profiles in these syndromes, particularly with disease progression. Why such overlap occurs remains unclear. Understanding the nature of this overlap, however, is essential to improve early diagnosis, characterization and management of those affected. Here, we explored common cognitive-behavioural and neural mechanisms contributing to heterogeneous frontotemporal dementia presentations, irrespective of clinical diagnosis. This transdiagnostic approach allowed us to ascertain whether symptoms not currently considered core to these two syndromes are present in a significant proportion of cases and to explore the neural basis of clinical heterogeneity. Sixty-two frontotemporal dementia patients (31 behavioural variant frontotemporal dementia and 31 semantic dementia) underwent comprehensive neuropsychological, behavioural and structural neuroimaging assessments. Orthogonally rotated principal component analysis of neuropsychological and behavioural data uncovered eight statistically independent factors explaining the majority of cognitive-behavioural performance variation in behavioural variant frontotemporal dementia and semantic dementia. These factors included Behavioural changes, Semantic dysfunction, General Cognition, Executive function, Initiation, Disinhibition, Visuospatial function and Affective changes. Marked individual-level overlap between behavioural variant frontotemporal dementia and semantic dementia was evident on the Behavioural changes, General Cognition, Initiation, Disinhibition and Affective changes factors. Compared to behavioural variant frontotemporal dementia, semantic dementia patients displayed disproportionate impairment on the Semantic dysfunction factor, whereas greater impairment on Executive and Visuospatial function factors was noted in behavioural variant frontotemporal dementia. Both patient groups showed comparable magnitude of atrophy to frontal regions, whereas severe temporal lobe atrophy was characteristic of semantic dementia. Whole-brain voxel-based morphometry correlations with emergent factors revealed associations between fronto-insular and striatal grey matter changes with Behavioural, Executive and Initiation factor performance, bilateral temporal atrophy with Semantic dysfunction factor scores, parietal-subcortical regions with General Cognitive performance and ventral temporal atrophy associated with Visuospatial factor scores. Together, these findings indicate that cognitive-behavioural overlap (i) occurs systematically in frontotemporal dementia; (ii) varies in a graded manner between individuals and (iii) is associated with degeneration of different neural systems. Our findings suggest that phenotypic heterogeneity in frontotemporal dementia syndromes can be captured along continuous, multidimensional spectra of cognitive-behavioural changes. This has implications for the diagnosis of both syndromes amidst overlapping features as well as the design of symptomatic treatments applicable to multiple syndromes.

Keywords

References

  1. Psychophysiology. 2016 Mar;53(3):286-97 [PMID: 26877115]
  2. Brain. 2011 Jul;134(Pt 7):2025-35 [PMID: 21646331]
  3. J Neurol Neurosurg Psychiatry. 2018 Apr;89(4):389-396 [PMID: 29066518]
  4. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  5. Brain Lang. 2019 Jul;194:46-57 [PMID: 31075725]
  6. Neuropsychiatr Dis Treat. 2019 Feb 20;15:557-573 [PMID: 30863078]
  7. Brain. 2020 Sep 1;143(9):2831-2843 [PMID: 32830218]
  8. Brain Imaging Behav. 2020 Oct;14(5):2004-2011 [PMID: 31273672]
  9. Cortex. 2022 Oct;155:333-346 [PMID: 36087431]
  10. Dement Geriatr Cogn Dis Extra. 2016 Jun 01;6(2):205-13 [PMID: 27350781]
  11. J Neurol. 2012 Jun;259(6):1071-80 [PMID: 22037958]
  12. Brain. 2020 Apr 1;143(4):1206-1219 [PMID: 32155237]
  13. Neurology. 2003 Nov 11;61(9):1196-203 [PMID: 14610120]
  14. Brain. 2020 May 1;143(5):1555-1571 [PMID: 32438414]
  15. Brain Commun. 2020 Oct 17;2(2):fcaa125 [PMID: 33376980]
  16. Brain. 2011 Sep;134(Pt 9):2456-77 [PMID: 21810890]
  17. Alzheimer Dis Assoc Disord. 2013 Jan-Mar;27(1):74-83 [PMID: 22367382]
  18. Front Neurol. 2020 Dec 29;11:616764 [PMID: 33447252]
  19. Nat Commun. 2022 Mar 28;13(1):1643 [PMID: 35347127]
  20. Neurocase. 2021 Jun;27(3):243-252 [PMID: 34003713]
  21. Neurology. 2016 Feb 16;86(7):600-10 [PMID: 26802093]
  22. J Neurol Neurosurg Psychiatry. 2011 May;82(5):476-86 [PMID: 20971753]
  23. Nat Biomed Eng. 2020 Aug;4(8):787-800 [PMID: 32747831]
  24. Brain. 2020 Oct 1;143(10):3121-3135 [PMID: 32940648]
  25. Brain Commun. 2020;2(1):fcaa068 [PMID: 32671341]
  26. Brain. 2003 Nov;126(Pt 11):2350-62 [PMID: 12876147]
  27. Cortex. 2017 Jan;86:275-289 [PMID: 27216359]
  28. Brain. 2014 Dec;137(Pt 12):3248-66 [PMID: 25348632]
  29. Neurology. 1998 Dec;51(6):1546-54 [PMID: 9855500]
  30. Neurology. 2010 Nov 23;75(21):1879-87 [PMID: 21098403]
  31. Brain. 2010 Jan;133(Pt 1):300-6 [PMID: 19805492]
  32. Lancet. 2015 Oct 24;386(10004):1672-82 [PMID: 26595641]
  33. Int J Geriatr Psychiatry. 2006 Nov;21(11):1078-85 [PMID: 16977673]
  34. Hum Brain Mapp. 2002 Nov;17(3):143-55 [PMID: 12391568]
  35. Lancet Neurol. 2011 Feb;10(2):162-72 [PMID: 21147039]
  36. Brain. 2021 Nov 29;144(10):2946-2953 [PMID: 33892488]
  37. Dement Neuropsychol. 2013 Jan-Mar;7(1):88-95 [PMID: 29213824]
  38. Neurology. 2011 Mar 15;76(11):1006-14 [PMID: 21325651]
  39. Nat Rev Neurosci. 2017 Jan;18(1):42-55 [PMID: 27881854]
  40. Behav Brain Res. 2012 Dec 1;235(2):124-9 [PMID: 22902293]
  41. Neuroimage Clin. 2018 Feb 23;18:675-681 [PMID: 29876259]
  42. Brain. 2017 Jun 1;140(6):1535-1536 [PMID: 28549134]
  43. Lancet Neurol. 2007 Nov;6(11):1004-14 [PMID: 17945154]
  44. J Consult Clin Psychol. 2020 Mar;88(3):179-195 [PMID: 32068421]
  45. Neuroimage. 2005 Feb 15;24(4):1042-51 [PMID: 15670681]
  46. Neurology. 2009 Nov 3;73(18):1443-50 [PMID: 19884571]
  47. Brain. 2022 Nov 21;145(11):4080-4096 [PMID: 35731122]
  48. Aphasiology. 2020;34(7):865-885 [PMID: 33012947]
  49. Brain. 2014 Apr;137(Pt 4):1241-53 [PMID: 24523434]
  50. Trends Cogn Sci. 2013 Jan;17(1):26-49 [PMID: 23265839]
  51. J Neurol Neurosurg Psychiatry. 2015 Oct;86(10):1082-8 [PMID: 25511791]
  52. Neurology. 1997 May;48(5 Suppl 6):S10-6 [PMID: 9153155]
  53. Neuroimage. 2017 May 1;151:72-80 [PMID: 27012504]
  54. Cortex. 2019 Nov;120:22-35 [PMID: 31220614]
  55. Brain Commun. 2021 Jul 16;3(3):fcab158 [PMID: 34458729]
  56. Cortex. 2018 Oct;107:188-203 [PMID: 28947063]
  57. J Int Neuropsychol Soc. 2017 Jan;23(1):34-43 [PMID: 27751195]
  58. Brain. 2009 May;132(Pt 5):1287-98 [PMID: 19297506]
  59. Dement Neuropsychol. 2008 Apr-Jun;2(2):102-107 [PMID: 29213551]
  60. J Alzheimers Dis. 2015;50(2):359-71 [PMID: 26682693]
  61. Neurology. 2016 May 3;86(18):1736-43 [PMID: 27037234]
  62. J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):865-70 [PMID: 24421286]
  63. Brain. 2015 Sep;138(Pt 9):2732-49 [PMID: 26141491]
  64. Brain. 2021 Jun 22;144(5):1551-1564 [PMID: 33843983]
  65. Brain. 2022 Sep 14;145(9):2955-2966 [PMID: 35857482]
  66. Neuroscientist. 2012 Aug;18(4):373-85 [PMID: 21670424]
  67. J Alzheimers Dis. 2019;72(4):1129-1144 [PMID: 31683488]
  68. Neurosci Biobehav Rev. 2021 Dec;131:1076-1095 [PMID: 34673112]
  69. Brain Sci. 2021 Jul 28;11(8): [PMID: 34439617]
  70. Nat Commun. 2020 May 22;11(1):2595 [PMID: 32444620]
  71. Brain. 2018 Aug 1;141(8):2245-2254 [PMID: 29762648]
  72. Brain. 2008 Nov;131(Pt 11):2957-68 [PMID: 18829698]
  73. J Neurol Neurosurg Psychiatry. 2016 Nov;87(11):1234-1241 [PMID: 27172939]

Grants

  1. MC_UU_00030/9/Medical Research Council
  2. MR/R023883/1/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0dementiafrontotemporalbehaviouralsemanticvariantchangesatrophycognitive-behaviouralsyndromesfactorsdysfunctiontemporaloverlapfactorclinicaldiagnosisneuraltransdiagnosticheterogeneityperformanceBehaviouralSemanticGeneralExecutivefunctionInitiationVisuospatialcommonearlydegenerationindependentoverlappingoccurspatients31neuropsychologicalprincipalcomponentanalysisCognitionDisinhibitionAffectiveimpairmentwhereasregionsscoresassociatedfindingsTwovariantspresentingpersonalityattributableprefrontaldisplayingprimarilydueanteriorDespiterepresentingdiagnosticentitiesmountingevidenceindicatesprofilesparticularlydiseaseprogressionremainsunclearUnderstandingnaturehoweveressentialimprovecharacterizationmanagementaffectedexploredmechanismscontributingheterogeneouspresentationsirrespectiveapproachallowedusascertainwhethersymptomscurrentlyconsideredcoretwopresentsignificantproportioncasesexplorebasisSixty-twounderwentcomprehensivestructuralneuroimagingassessmentsOrthogonallyrotateddatauncoveredeightstatisticallyexplainingmajorityvariationincludedMarkedindividual-levelevidentCompareddisplayeddisproportionategreaternotedpatientgroupsshowedcomparablemagnitudefrontalseverelobecharacteristicWhole-brainvoxel-basedmorphometrycorrelationsemergentrevealedassociationsfronto-insularstriatalgreymatterbilateralparietal-subcorticalCognitiveventralTogetherindicatesystematicallyiivariesgradedmannerindividualsiiidifferentsystemssuggestphenotypiccancapturedalongcontinuousmultidimensionalspectraimplicationsamidstfeatureswelldesignsymptomatictreatmentsapplicablemultipleMappingcognitiveaffectivedimensionsprimaryprogressiveaphasia

Similar Articles

Cited By