Multiple mosquito AMPs are needed to potentiate their antifungal effect against entomopathogenic fungi.

José L Ramirez, Kylie J Hampton, Alayna M Rosales, Ephantus J Muturi
Author Information
  1. José L Ramirez: Crop Bioprotection Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States.
  2. Kylie J Hampton: Crop Bioprotection Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States.
  3. Alayna M Rosales: Biology Department, Bradley University, Peoria, IL, United States.
  4. Ephantus J Muturi: Crop Bioprotection Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, United States.

Abstract

Mosquito resistance to microbial infections, including fungal entomopathogens that are selected for mosquito control, depend on a range of antimicrobial effectors, among them antimicrobial peptides (AMPs). These short peptides, along the antimicrobial effector lysozyme, act by disrupting the microbial cell membrane or by interfering with microbial physiological processes. While the induction of AMPs and lysozyme during fungal entomopathogenic infections have been reported, their contribution to the mosquito antifungal response has not been evaluated. In this study, we assessed the induction of AMPs and lysozyme genes at two points of infection and against distinct entomopathogenic fungi. Our results indicate that fungal infection elicits the expression of cecropin, defensin, diptericin, holotricin, and lysozyme, but do not affect those of attacin or gambicin. We further evaluated the role of these antimicrobial effectors RNAi-based depletion of select AMPs during challenges with two entomopathogenic fungi. Our results reveal that AMPs and lysozyme are critical to the antifungal response, acting in concert, rather than individually, to potentiate their antimicrobial effect against entomopathogenic fungi. This study further contributes to a better understanding of the mechanisms that confer resistance to entomopathogenic fungi in an important mosquito vector.

Keywords

References

  1. Adv Genet. 2016;94:307-64 [PMID: 27131329]
  2. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160598]
  3. EMBO J. 1984 Dec 20;3(13):3347-51 [PMID: 6396089]
  4. Microbes Infect. 2004 Apr;6(5):448-59 [PMID: 15109959]
  5. Front Cell Infect Microbiol. 2020 Jan 23;9:465 [PMID: 32039046]
  6. Biochim Biophys Acta. 2012 Nov;1818(11):2623-35 [PMID: 22705262]
  7. J Biochem. 1994 Jan;115(1):82-6 [PMID: 8188641]
  8. Biochim Biophys Acta. 1988 Apr 7;939(2):260-6 [PMID: 3128324]
  9. PLoS Pathog. 2016 Feb 18;12(2):e1005434 [PMID: 26891349]
  10. Insect Mol Biol. 2005 Jan;14(1):89-94 [PMID: 15663778]
  11. Int J Mol Sci. 2019 Nov 22;20(23): [PMID: 31766730]
  12. Arch Insect Biochem Physiol. 1999;40(2):88-98 [PMID: 10077828]
  13. Malar J. 2010 Mar 08;9:71 [PMID: 20210990]
  14. Antibiotics (Basel). 2021 Feb 20;10(2): [PMID: 33672685]
  15. Elife. 2022 Apr 26;11: [PMID: 35471187]
  16. Front Immunol. 2020 Sep 02;11:2030 [PMID: 32983149]
  17. Amino Acids. 2019 Feb;51(2):175-191 [PMID: 30167962]
  18. Sci Rep. 2018 Jul 2;8(1):9896 [PMID: 29967469]
  19. J Invertebr Pathol. 2005 Sep;90(1):1-9 [PMID: 16169556]
  20. Science. 2007 Jun 22;316(5832):1738-43 [PMID: 17588928]
  21. Immunity. 2006 Oct;25(4):677-85 [PMID: 17045818]
  22. Sci Rep. 2017 Mar 16;7:43618 [PMID: 28300076]
  23. Parasit Vectors. 2017 Feb 23;10(1):103 [PMID: 28231846]
  24. Elife. 2019 Feb 26;8: [PMID: 30803481]
  25. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160593]
  26. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  27. PLoS One. 2011;6(8):e23591 [PMID: 21897846]
  28. PLoS Negl Trop Dis. 2018 Apr 23;12(4):e0006433 [PMID: 29684026]
  29. Insect Biochem Mol Biol. 1994 Apr;24(4):403-10 [PMID: 8025559]
  30. Toxins (Basel). 2018 Nov 08;10(11): [PMID: 30413046]
  31. Cell Microbiol. 2010 Jan;12(1):1-9 [PMID: 19804484]
  32. Annu Rev Entomol. 1997;42:611-43 [PMID: 9017902]
  33. Eur J Biochem. 1996 Feb 15;236(1):263-71 [PMID: 8617274]
  34. Front Pharmacol. 2014 Dec 19;5:275 [PMID: 25566072]
  35. Insect Biochem Mol Biol. 1999 Nov;29(11):965-72 [PMID: 10560137]
  36. Dev Comp Immunol. 2016 Aug;61:60-9 [PMID: 26997372]
  37. Mem Inst Oswaldo Cruz. 2018 Mar;113(3):206-214 [PMID: 29412361]
  38. Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11420-5 [PMID: 16076953]
  39. PLoS Pathog. 2015 Jun 09;11(6):e1004931 [PMID: 26057557]
  40. Appl Microbiol Biotechnol. 2014 Jul;98(13):5807-22 [PMID: 24811407]
  41. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  42. Mol Ecol. 2017 Oct;26(19):5334-5343 [PMID: 28762573]

Word Cloud

Created with Highcharts 10.0.0AMPsantimicrobialentomopathogenicmosquitolysozymefungifungalantifungalmicrobialeffectorsresistanceinfectionspeptidesinductionresponseevaluatedstudytwoinfectionresultspotentiateeffectimmunityMosquitoincludingentomopathogensselectedcontroldependrangeamongshortalongeffectoractdisruptingcellmembraneinterferingphysiologicalprocessesreportedcontributionassessedgenespointsdistinctindicateelicitsexpressioncecropindefensindiptericinholotricinaffectattacingambicinroleRNAi-baseddepletionselectchallengesrevealcriticalactingconcertratherindividuallycontributesbetterunderstandingmechanismsconferimportantvectorMultipleneededAedesaegyptientomopathogenvector-pathogeninteractions

Similar Articles

Cited By