A multi-dimensional view of context-dependent G protein-coupled receptor function.

Maria Marti-Solano
Author Information
  1. Maria Marti-Solano: Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K. ORCID

Abstract

G protein-coupled receptor (GPCR) family members can sense an extraordinary variety of biomolecules to activate intracellular signalling cascades that modulate key aspects of cell physiology. Apart from their crucial role in maintaining cell homeostasis, these critical sensory and modulatory properties have made GPCRs the most successful drug target class to date. However, establishing direct links between receptor activation of specific intracellular partners and individual physiological outcomes is still an ongoing challenge. By studying this receptor signalling complexity at increasing resolution through the development of novel biosensors and high-throughput techniques, a growing number of studies are revealing how receptor function can be diversified in a spatial, temporal or cell-specific manner. This mini-review will introduce recent examples of this context-dependent receptor signalling and discuss how it can impact our understanding of receptor function in health and disease, and contribute to the search of more selective, efficacious and safer GPCR drug candidates.

Keywords

References

  1. Nat Chem Biol. 2014 Dec;10(12):1061-5 [PMID: 25362359]
  2. Nat Commun. 2017 Jun 16;8:15700 [PMID: 28621310]
  3. Nature. 2020 Nov;587(7835):650-656 [PMID: 33149304]
  4. Br J Pharmacol. 2018 Nov;175(21):4026-4035 [PMID: 28872669]
  5. Front Mol Neurosci. 2019 Nov 12;12:273 [PMID: 31798411]
  6. Nat Commun. 2019 Dec 19;10(1):5784 [PMID: 31857598]
  7. Am J Physiol Cell Physiol. 2022 Jun 1;322(6):C1047-C1060 [PMID: 35417266]
  8. J Neurosci. 2014 Mar 26;34(13):4589-98 [PMID: 24672004]
  9. Nat Rev Drug Discov. 2017 Dec;16(12):829-842 [PMID: 29075003]
  10. ACS Pharmacol Transl Sci. 2020 Mar 31;3(2):361-370 [PMID: 32296774]
  11. ACS Omega. 2019 Sep 30;4(16):17048-17059 [PMID: 31646252]
  12. Curr Opin Struct Biol. 2021 Aug;69:142-149 [PMID: 34048988]
  13. Gut. 2022 Apr;71(4):695-704 [PMID: 33785555]
  14. Subcell Biochem. 2012;63:225-40 [PMID: 23161141]
  15. Elife. 2021 May 20;10: [PMID: 34013886]
  16. Cell Syst. 2021 Apr 21;12(4):324-337.e5 [PMID: 33667409]
  17. Nat Chem Biol. 2017 Aug 18;13(9):929-937 [PMID: 28820879]
  18. Elife. 2019 Aug 21;8: [PMID: 31433293]
  19. Elife. 2022 Mar 18;11: [PMID: 35302493]
  20. Cell. 2017 Apr 6;169(2):338-349.e11 [PMID: 28388415]
  21. J Proteome Res. 2020 Jan 3;19(1):511-524 [PMID: 31774292]
  22. Front Cell Neurosci. 2022 Jan 17;15:814547 [PMID: 35110998]
  23. Mol Pharmacol. 2018 Apr;93(4):251-258 [PMID: 29298813]
  24. Mol Pharmacol. 2015 Sep;88(3):572-8 [PMID: 26184590]
  25. PLoS Biol. 2009 Aug;7(8):e1000172 [PMID: 19688034]
  26. Elife. 2022 Mar 18;11: [PMID: 35302494]
  27. Trends Pharmacol Sci. 2017 Dec;38(12):1110-1124 [PMID: 29074251]
  28. Nat Rev Drug Discov. 2017 Jan;16(1):19-34 [PMID: 27910877]
  29. Science. 2017 Mar 3;355(6328):966-969 [PMID: 28254944]
  30. Mol Cell Endocrinol. 2019 May 15;488:36-51 [PMID: 30862498]
  31. Science. 2022 Jan 14;375(6577):214-221 [PMID: 35025664]
  32. Mol Pharmacol. 2016 Oct;90(4):483-95 [PMID: 27512119]
  33. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15281-15292 [PMID: 32546520]
  34. Nature. 2017 Sep 7;549(7670):48-53 [PMID: 28854168]
  35. Nat Commun. 2020 Jun 19;11(1):3033 [PMID: 32561830]
  36. iScience. 2020 Oct 07;23(10):101643 [PMID: 33103080]
  37. Cell. 2021 Jun 24;184(13):3502-3518.e33 [PMID: 34048700]
  38. Cell. 2020 Sep 17;182(6):1519-1530.e17 [PMID: 32846156]
  39. Curr Opin Pharmacol. 2022 Apr;63:102192 [PMID: 35255451]
  40. Cell. 2019 Jun 13;177(7):1933-1947.e25 [PMID: 31160049]
  41. Elife. 2018 Jun 06;7: [PMID: 29873633]
  42. Cell. 2022 Mar 31;185(7):1130-1142.e11 [PMID: 35294858]
  43. Drug Discov Today. 2019 Apr;24(4):1031-1037 [PMID: 30831262]
  44. Nature. 2022 Nov;611(7934):173-179 [PMID: 36289326]
  45. Elife. 2019 Nov 11;8: [PMID: 31710287]
  46. Nat Commun. 2016 Feb 24;7:10842 [PMID: 26905976]
  47. ACS Pharmacol Transl Sci. 2021 Mar 22;4(2):813-823 [PMID: 33860204]
  48. Nat Chem Biol. 2017 Jul;13(7):799-806 [PMID: 28553949]
  49. Biochem Soc Trans. 2016 Apr 15;44(2):562-7 [PMID: 27068970]
  50. Mol Cell Endocrinol. 2019 Mar 1;483:24-30 [PMID: 30610913]
  51. Trends Pharmacol Sci. 2018 Feb;39(2):109-122 [PMID: 29157577]

MeSH Term

Receptors, G-Protein-Coupled
Signal Transduction
Cell Membrane
Drug Delivery Systems
Ligands

Chemicals

Receptors, G-Protein-Coupled
Ligands

Word Cloud

Created with Highcharts 10.0.0receptorsignallingcandrugfunctionGprotein-coupledGPCRintracellularcellcontext-dependentfamilymemberssenseextraordinaryvarietybiomoleculesactivatecascadesmodulatekeyaspectsphysiologyApartcrucialrolemaintaininghomeostasiscriticalsensorymodulatorypropertiesmadeGPCRssuccessfultargetclassdateHoweverestablishingdirectlinksactivationspecificpartnersindividualphysiologicaloutcomesstillongoingchallengestudyingcomplexityincreasingresolutiondevelopmentnovelbiosensorshigh-throughputtechniquesgrowingnumberstudiesrevealingdiversifiedspatialtemporalcell-specificmannermini-reviewwillintroducerecentexamplesdiscussimpactunderstandinghealthdiseasecontributesearchselectiveefficacioussafercandidatesmulti-dimensionalviewG-protein-coupledreceptorsbiologicalnetworkscellularlocalizationdiscoverydesignsystemsbiology

Similar Articles

Cited By