Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean.

Kincső Decsi, Barbara Kutasy, Géza Hegedűs, Zoltán Péter Alföldi, Nikoletta Kálmán, Ágnes Nagy, Eszter Virág
Author Information
  1. Kincső Decsi: Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary.
  2. Barbara Kutasy: Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary.
  3. Géza Hegedűs: EduCoMat Ltd., Keszthely, Hungary.
  4. Zoltán Péter Alföldi: Department of Environmental Biology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary.
  5. Nikoletta Kálmán: Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary.
  6. Ágnes Nagy: Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary.
  7. Eszter Virág: EduCoMat Ltd., Keszthely, Hungary.

Abstract

Recently, climate change has had an increasing impact on the world. Innate defense mechanisms operating in plants - such as PAMP-triggered Immunity (PTI) - help to reduce the adverse effects caused by various abiotic and biotic stressors. In this study, the effects of ELICE16INDURES® plant conditioner for organic farming, developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász Hungary, were studied in a soybean population in Northern Hungary. The active compounds and ingredients of this product were selected in such a way as to facilitate the triggering of general plant immunity without the presence and harmful effects of pathogens, thereby strengthening the healthy plant population and preparing it for possible stress effects. In practice, treatments of this agent were applied at two different time points and two concentrations. The conditioning effect was well demonstrated by using agro-drone and ENDVI determination in the soybean field. The genetic background of healthier plants was investigated by NGS sequencing, and by the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways regulating PTI. The genome-wide transcriptional profiling resulted in 13 contigs related to PAMP-triggered immunity and activated as a result of the treatments. Further analyses showed 16 additional PTI-related contigs whose gene expression changed positively as a result of the treatments. The gene expression values of genes encoded in these contigs were determined by mRNA quantification and validated by RT-qPCR. Both - relatively low and high treatments - showed an increase in gene expression of key genes involving AOC, IFS, MAPK4, MEKK, and GST. Transcriptomic results indicated that the biosyntheses of jasmonic acid (JA), salicylic acid (SA), phenylpropanoid, flavonoid, phytoalexin, and cellular detoxification processes were triggered in the appropriate molecular steps and suggested that plant immune reactions may be activated also artificially, and innate immunity can be enhanced with proper plant biostimulants.

Keywords

References

  1. Food Chem. 2022 Mar 30;373(Pt B):131480 [PMID: 34731790]
  2. Genomics. 2019 Jul;111(4):619-628 [PMID: 29621573]
  3. Int J Mol Sci. 2020 Feb 20;21(4): [PMID: 32093321]
  4. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  5. Curr Opin Immunol. 2001 Feb;13(1):55-62 [PMID: 11154918]
  6. J Food Biochem. 2020 Feb;44(2):e13118 [PMID: 31845369]
  7. Mol Genet Genomics. 2015 Apr;290(2):611-22 [PMID: 25367283]
  8. J Biol Chem. 2004 May 21;279(21):22440-8 [PMID: 15001572]
  9. Antioxidants (Basel). 2020 May 25;9(5): [PMID: 32466087]
  10. Mol Plant Pathol. 2014 Dec;15(9):865-70 [PMID: 25382065]
  11. Plant Physiol. 1995 Jul;108(3):919-27 [PMID: 7630972]
  12. Mol Plant Microbe Interact. 2018 Apr;31(4):403-409 [PMID: 29135338]
  13. EMBO Rep. 2017 Mar;18(3):464-476 [PMID: 28069610]
  14. Theor Appl Genet. 2019 Sep;132(9):2485-2507 [PMID: 31144001]
  15. Front Plant Sci. 2020 Jul 31;11:952 [PMID: 32849671]
  16. Plant Physiol. 2003 Aug;132(4):1973-81 [PMID: 12913153]
  17. Plant Cell Physiol. 2003 Feb;44(2):103-12 [PMID: 12610212]
  18. Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents [PMID: 19366914]
  19. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  20. Annu Rev Plant Biol. 2009;60:379-406 [PMID: 19400727]
  21. Cell Host Microbe. 2014 Sep 10;16(3):376-90 [PMID: 25211079]
  22. Microb Pathog. 2019 Oct;135:103610 [PMID: 31288065]
  23. Front Mol Biosci. 2017 Jun 20;4:42 [PMID: 28676851]
  24. Plant J. 2007 Jul;51(1):127-39 [PMID: 17559512]
  25. Plant Cell. 2003 Nov;15(11):2636-46 [PMID: 14576290]
  26. Eur J Biochem. 1994 Dec 1;226(2):619-26 [PMID: 8001577]
  27. Plant Cell Rep. 2013 Jul;32(7):1085-98 [PMID: 23584548]
  28. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  29. PeerJ. 2019 Oct 4;7:e7421 [PMID: 31598422]
  30. Plant J. 2003 Apr;34(2):217-28 [PMID: 12694596]
  31. Molecules. 2014 Jan 06;19(1):568-80 [PMID: 24399048]
  32. BMC Plant Biol. 2010 Nov 09;10:243 [PMID: 21062474]
  33. Plant Physiol. 2000 Sep;124(1):21-9 [PMID: 10982418]
  34. Front Plant Sci. 2020 Apr 17;11:338 [PMID: 32362901]
  35. Plant J. 2010 Aug;63(4):599-612 [PMID: 20525005]
  36. Plant Cell Rep. 2006 Jul;25(7):728-40 [PMID: 16456648]
  37. Data Brief. 2022 Feb 22;41:107983 [PMID: 35252498]
  38. Plant Physiol Biochem. 2020 Feb;147:141-160 [PMID: 31862580]
  39. Hortic Res. 2017 Dec 27;4:17079 [PMID: 29285397]
  40. Plant Sci. 2000 Aug 22;157(2):181-190 [PMID: 10960731]
  41. Plant Cell Physiol. 2007 Jul;48(7):938-47 [PMID: 17548373]
  42. Plant Mol Biol. 2003 Apr;51(6):895-911 [PMID: 12777050]
  43. J Agric Food Chem. 2021 Jun 30;69(25):7057-7063 [PMID: 34152141]
  44. Essays Biochem. 2022 Sep 30;66(5):607-620 [PMID: 35726519]
  45. Planta. 2022 May 10;255(6):120 [PMID: 35538269]
  46. Trends Plant Sci. 2002 Sep;7(9):405-10 [PMID: 12234732]
  47. Mol Plant Microbe Interact. 1991 Jan-Feb;4(1):14-8 [PMID: 1799693]
  48. J Exp Bot. 2002 May;53(372):1227-36 [PMID: 11997371]
  49. EMBO Rep. 2022 Feb 3;23(2):e53817 [PMID: 35041234]
  50. Mol Cells. 2012 Sep;34(3):271-8 [PMID: 22886763]
  51. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  52. Plant J. 2006 Jul;47(2):249-57 [PMID: 16790031]
  53. Mol Plant Microbe Interact. 2008 Nov;21(11):1408-20 [PMID: 18842091]
  54. Front Plant Sci. 2018 Dec 21;9:1836 [PMID: 30622544]
  55. PLoS Genet. 2016 Sep 12;12(9):e1006311 [PMID: 27618555]
  56. Curr Opin Virol. 2020 Jun;42:32-39 [PMID: 32504993]
  57. Proteomics. 2011 Aug;11(15):3086-105 [PMID: 21548095]
  58. Plant Physiol. 2001 Jan;125(1):306-17 [PMID: 11154338]
  59. Plant Physiol. 1984 Jun;75(2):458-61 [PMID: 16663643]
  60. J Biol Chem. 2003 Jan 24;278(4):2256-64 [PMID: 12426314]
  61. Comput Biol Chem. 2018 Dec;77:413-429 [PMID: 30476702]
  62. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  63. New Phytol. 2017 Mar;213(4):1802-1817 [PMID: 27861989]
  64. BMC Plant Biol. 2014 Nov 28;14:326 [PMID: 25430398]
  65. Plant Physiol. 2002 Mar;128(3):865-75 [PMID: 11891243]
  66. Trends Biotechnol. 1997 Jan;15(1):15-9 [PMID: 9032988]
  67. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  68. New Phytol. 2003 Jul;159(1):109-115 [PMID: 33873679]
  69. Cell. 2006 Feb 24;124(4):803-14 [PMID: 16497589]
  70. Phytopathology. 2013 Oct;103(10):984-94 [PMID: 23617338]
  71. Sci Rep. 2022 Mar 8;12(1):4078 [PMID: 35260725]
  72. Data Brief. 2022 Apr 13;42:108182 [PMID: 35496495]
  73. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):741-6 [PMID: 11209069]
  74. Plant Cell. 1997 Jul;9(7):1157-1168 [PMID: 12237381]
  75. Curr Opin Plant Biol. 2007 Aug;10(4):335-41 [PMID: 17652011]
  76. Annu Rev Plant Biol. 2004;55:85-107 [PMID: 15725058]
  77. Plants (Basel). 2022 Nov 03;11(21): [PMID: 36365426]
  78. Plant J. 2004 Nov;40(4):512-22 [PMID: 15500467]
  79. Plant J. 2014 Nov;80(4):709-27 [PMID: 25227923]
  80. Mol Plant. 2008 May;1(3):459-70 [PMID: 19825553]
  81. Curr Opin Plant Biol. 2002 Oct;5(5):415-24 [PMID: 12183180]
  82. Plant Physiol Biochem. 2010 Jul;48(7):560-4 [PMID: 20219383]
  83. Plant Cell. 2006 Apr;18(4):1038-51 [PMID: 16531493]
  84. Theor Appl Genet. 2022 Feb;135(2):439-447 [PMID: 34674010]
  85. Planta. 2007 Feb;225(3):665-79 [PMID: 16924535]
  86. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  87. J Biol Chem. 2007 Nov 23;282(47):34013-8 [PMID: 17872948]
  88. Mol Plant Microbe Interact. 2022 Sep;35(9):779-790 [PMID: 35617509]
  89. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  90. Biosci Biotechnol Biochem. 2002 Mar;66(3):566-70 [PMID: 12005050]
  91. Int J Mol Sci. 2020 Feb 20;21(4): [PMID: 32093336]
  92. Plant Cell. 2002 Jan;14(1):275-86 [PMID: 11826312]
  93. Plant Mol Biol. 2004 Dec;56(6):973-85 [PMID: 15821994]
  94. Nat Immunol. 2005 Oct;6(10):973-9 [PMID: 16177805]
  95. Plant Cell. 2009 Feb;21(2):622-41 [PMID: 19234086]
  96. FEBS Lett. 1998 Aug 7;432(3):182-6 [PMID: 9720921]
  97. Plant Physiol. 2014 May 28;165(3):1269-1284 [PMID: 24872380]
  98. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  99. PLoS One. 2013 Dec 16;8(12):e84160 [PMID: 24358338]
  100. Nature. 2002 Feb 28;415(6875):977-83 [PMID: 11875555]
  101. Plant Physiol. 1993 Jul;102(3):795-802 [PMID: 12231867]

Word Cloud

Created with Highcharts 10.0.0plant-effectsimmunitytreatmentsexpressionELICE16INDURES®soybeangenescontigsgeneplantsPAMP-triggeredPTIconditionerHungarypopulationtwousingfieldprofilingactivatedresultshowedacidRecentlyclimatechangeincreasingimpactworldInnatedefensemechanismsoperatingImmunityhelpreduceadversecausedvariousabioticbioticstressorsstudyorganicfarmingdevelopedResearchInstituteMedicinalPlantsHerbsLtdBudakalászstudiedNorthernactivecompoundsingredientsproductselectedwayfacilitatetriggeringgeneralwithoutpresenceharmfulpathogenstherebystrengtheninghealthypreparingpossiblestresspracticeagentapplieddifferenttimepointsconcentrationsconditioningeffectwelldemonstratedagro-droneENDVIdeterminationgeneticbackgroundhealthierinvestigatedNGSsequencinglevelsencodingenzymesinvolvedcatalysismetabolicpathwaysregulatinggenome-widetranscriptionalresulted13relatedanalyses16additionalPTI-relatedwhosechangedpositivelyvaluesencodeddeterminedmRNAquantificationvalidatedRT-qPCRrelativelylowhighincreasekeyinvolvingAOCIFSMAPK4MEKKGSTTranscriptomicresultsindicatedbiosynthesesjasmonicJAsalicylicSAphenylpropanoidflavonoidphytoalexincellulardetoxificationprocessestriggeredappropriatemolecularstepssuggestedimmunereactionsmayalsoartificiallyinnatecanenhancedproperbiostimulantsNaturalstimulationcultureDefensemechanismExpressionGlycinemaxSoybean

Similar Articles

Cited By