Transcriptome mining extends the host range of the to non-bilaterians.

Jonathon C O Mifsud, Vincenzo A Costa, Mary E Petrone, Ezequiel M Marzinelli, Edward C Holmes, Erin Harvey
Author Information
  1. Jonathon C O Mifsud: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia. ORCID
  2. Vincenzo A Costa: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
  3. Mary E Petrone: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
  4. Ezequiel M Marzinelli: School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia.
  5. Edward C Holmes: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia. ORCID
  6. Erin Harvey: Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia. ORCID

Abstract

The flavivirids (family ) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (, phylum ), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68���per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23���per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.

Keywords

References

  1. Microbiol Spectr. 2022 Jun 29;10(3):e0013822 [PMID: 35536058]
  2. J Virol. 2020 Jul 16;94(15): [PMID: 32434883]
  3. Gigascience. 2016 May 03;5:18 [PMID: 27144000]
  4. Mol Biol Evol. 2022 Oct 7;39(10): [PMID: 36063436]
  5. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  6. Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70 [PMID: 18772285]
  7. Virus Evol. 2021 Apr 12;7(1):veab036 [PMID: 34221451]
  8. Microbiome. 2018 Apr 2;6(1):64 [PMID: 29609655]
  9. Annu Rev Virol. 2016 Sep 29;3(1):53-75 [PMID: 27741408]
  10. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6744-9 [PMID: 24753611]
  11. Biofouling. 2012;28(3):339-49 [PMID: 22452393]
  12. Algorithms Mol Biol. 2010 Feb 03;5:16 [PMID: 20181081]
  13. Viruses. 2017 Jun 21;9(6): [PMID: 28635667]
  14. Genome Biol. 2020 Apr 28;21(1):103 [PMID: 32345331]
  15. Virus Evol. 2021 Mar 30;7(1):veab030 [PMID: 34026271]
  16. Ecol Lett. 2015 Nov;18(11):1153-1162 [PMID: 26299267]
  17. Virus Evol. 2021 Apr 13;7(1):veab034 [PMID: 34017611]
  18. Bioinformatics. 2021 Aug 25;37(16):2481-2482 [PMID: 33216126]
  19. Mol Phylogenet Evol. 2008 Oct;49(1):153-69 [PMID: 18582582]
  20. PLoS Pathog. 2013;9(6):e1003438 [PMID: 23818848]
  21. Virus Evol. 2018 Oct 31;4(2):vey031 [PMID: 30397510]
  22. Viruses. 2016 Mar 01;8(3):66 [PMID: 26938550]
  23. J Virol. 2015 Oct 21;90(2):659-69 [PMID: 26491167]
  24. Virus Evol. 2021 Feb 04;7(1):veab005 [PMID: 33623709]
  25. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  26. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  27. PLoS Pathog. 2010 Jul 01;6:e1000972 [PMID: 20617167]
  28. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8194-9 [PMID: 23610427]
  29. Viruses. 2022 Feb 11;14(2): [PMID: 35215964]
  30. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  31. J Virol. 2022 Sep 14;96(17):e0043922 [PMID: 35975997]
  32. Nat Biotechnol. 2021 May;39(5):578-585 [PMID: 33349699]
  33. Nat Ecol Evol. 2023 Nov;7(11):1834-1843 [PMID: 37679456]
  34. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  35. J Gen Virol. 2017 Jan;98(1):2-3 [PMID: 28218572]
  36. Nature. 2018 Apr;556(7700):197-202 [PMID: 29618816]
  37. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  38. J Virol. 2012 Oct;86(20):10999-1012 [PMID: 22855479]
  39. J Virol. 2019 Jun 28;93(14): [PMID: 31068424]
  40. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  41. mBio. 2013 Apr 09;4(2):e00216-13 [PMID: 23572554]
  42. PeerJ. 2020 Jan 27;8:e8356 [PMID: 32025367]
  43. Viruses. 2020 Oct 09;12(10): [PMID: 33050289]
  44. Virus Evol. 2020 Aug 20;6(2):veaa064 [PMID: 33240526]
  45. Virus Evol. 2020 Apr 25;6(2):veaa033 [PMID: 32704383]
  46. mSystems. 2020 Jul 7;5(4): [PMID: 32636338]
  47. Sci Adv. 2020 Jan 08;6(2):eaax4942 [PMID: 31934625]
  48. J Evol Biol. 2021 Jan;34(1):128-137 [PMID: 33140895]
  49. Virus Evol. 2021 Feb 12;7(1):veab003 [PMID: 33614159]
  50. R Soc Open Sci. 2018 Feb 28;5(2):170910 [PMID: 29515828]
  51. Elife. 2019 Aug 16;8: [PMID: 31418692]
  52. PLoS Biol. 2018 Mar 27;16(3):e2004892 [PMID: 29584718]
  53. Virus Evol. 2023 Feb 02;9(1):vead011 [PMID: 36910859]
  54. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  55. PeerJ. 2022 Oct 13;10:e14055 [PMID: 36258794]
  56. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  57. Sci Transl Med. 2018 Mar 28;10(434): [PMID: 29593102]
  58. ISME Commun. 2022 Oct 2;2(1):95 [PMID: 37938670]
  59. Nat Ecol Evol. 2021 Feb;5(2):243-250 [PMID: 33230257]
  60. Viruses. 2021 Mar 31;13(4): [PMID: 33807136]
  61. Cell Host Microbe. 2016 Sep 14;20(3):357-367 [PMID: 27569558]
  62. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  63. Curr Biol. 2014 Dec 1;24(23):2827-32 [PMID: 25454590]
  64. Nature. 2022 Feb;602(7895):142-147 [PMID: 35082445]
  65. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  66. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  67. Virus Evol. 2022 Sep 06;8(2):veac085 [PMID: 36533146]
  68. Genome Biol Evol. 2020 Nov 3;12(11):1953-1960 [PMID: 32835354]
  69. Viruses. 2019 Mar 24;11(3): [PMID: 30909631]
  70. Sci Rep. 2019 Oct 18;9(1):14953 [PMID: 31628350]
  71. Arch Virol. 2018 Mar;163(3):679-685 [PMID: 29147783]
  72. Int J Mol Sci. 2019 Feb 21;20(4): [PMID: 30795590]
  73. Comp Biochem Physiol Part D Genomics Proteomics. 2016 Dec;20:27-40 [PMID: 27497300]
  74. Virus Res. 2018 Jan 15;244:218-229 [PMID: 29055712]
  75. Nucleic Acids Res. 2017 Jan 4;45(D1):D482-D490 [PMID: 27899678]
  76. Sci Rep. 2020 Dec 3;10(1):21115 [PMID: 33273613]
  77. Virus Evol. 2021 May 31;7(2):veab050 [PMID: 34527280]
  78. Nucleic Acids Res. 2015 Jan;43(Database issue):D571-7 [PMID: 25428358]
  79. Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684): [PMID: 26554036]
  80. BMC Biol. 2022 Jan 7;20(1):4 [PMID: 34996434]
  81. BMC Bioinformatics. 2018 Aug 29;19(1):307 [PMID: 30157759]
  82. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  83. DNA Res. 2019 Feb 1;26(1):13-20 [PMID: 30351380]
  84. Sci Rep. 2019 Aug 26;9(1):12372 [PMID: 31451757]
  85. PLoS Pathog. 2017 Feb 8;13(2):e1006215 [PMID: 28178344]
  86. Mol Biol Evol. 2015 Dec;32(12):3089-107 [PMID: 26318402]
  87. Mol Biol Evol. 2023 Apr 4;40(4): [PMID: 37014783]
  88. One Health. 2021 Dec 07;13:100360 [PMID: 34917744]
  89. Transbound Emerg Dis. 2022 Mar;69(2):195-203 [PMID: 34606685]
  90. J Virol. 2022 Dec 21;96(24):e0026022 [PMID: 35638822]
  91. Am J Trop Med Hyg. 1978 Jan;27(1 Pt 1):153-61 [PMID: 626270]
  92. J Gen Virol. 2016 Nov;97(11):2894-2907 [PMID: 27692039]
  93. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  94. Nucleic Acids Res. 2021 Jan 8;49(D1):D92-D96 [PMID: 33196830]
  95. Curr Biol. 2018 May 21;28(10):1620-1627.e5 [PMID: 29731307]
  96. Proc Biol Sci. 2019 Jan 16;286(1894):20182621 [PMID: 30963873]

Word Cloud

Created with Highcharts 10.0.0flaviviridflavivirusesMetazoasequencesfamilygroupvirusesincludeevolutionancientoriginyearsidentificationviraldataacrosshostrangecross-speciestransmissioneventmediancentincludingbasalflaviviridspositive-senseRNAwell-documentedagentshumandiseaseDespiteimportanceubiquitytimescaleuncertainspanningmillionssupportedpresencevertebratesinvertebratesflavivirus-derivedendogenouselementpeachblossomjellyfishgenomephylumimplyingaroseearlydatehoweverexogenousidentifiedhostshelpresolveantiquityminedpubliclyavailabletranscriptomeexpandeddiversitywithin32novelextendedpestivirusesamphibiansreptilesray-finnedfishco-phylogeneticanalysisfoundpredominatemacroevolutionarynon-vectoredgenera68���perbatsrodentsalthoughlong-termvirus-hostco-divergencestillregularoccurrence23���perNotablydiscoveredflavivirus-likemetazoanspeciesfirstassociatedCnidariasequenceformedlineagegenuscloserarthropodcrustaceantamanavirusincludesvarietyinvertebratevertebrateCombinedattestlikelycloseemergencemetazoans750-800millionagoTranscriptomeminingextendsnon-bilateriansFlaviviridaeFlavivirusHepacivirusPestivirusphylogenyvirusdiscovery

Similar Articles

Cited By (14)