Estimation of the average treatment effect with variable selection and measurement error simultaneously addressed for potential confounders.

Grace Y Yi, Li-Pang Chen
Author Information
  1. Grace Y Yi: Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Canada. ORCID
  2. Li-Pang Chen: Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Canada.

Abstract

In the framework of causal inference, the inverse probability weighting estimation method and its variants have been commonly employed to estimate the average treatment effect. Such methods, however, are challenged by the presence of irrelevant pre-treatment variables and measurement error. Ignoring these features and naively applying the usual inverse probability weighting estimation procedures may typically yield biased inference results. In this article, we develop an inference method for estimating the average treatment effect with those features taken into account. We establish theoretical properties for the resulting estimator and carry out numerical studies to assess the finite sample performance of the proposed estimator.

Keywords

References

  1. Ann Stat. 2008 Aug 1;36(4):1509-1533 [PMID: 19823597]
  2. Biometrics. 2021 Sep;77(3):956-969 [PMID: 32687216]
  3. Ann Intern Med. 2008 May 6;148(9):656-61 [PMID: 18458278]
  4. Stat Methods Med Res. 2019 Jul;28(7):2049-2068 [PMID: 29241426]
  5. Int J Epidemiol. 2015 Aug;44(4):1452-9 [PMID: 25921223]
  6. J Clin Epidemiol. 2010 Aug;63(8):826-33 [PMID: 20630332]
  7. Biometrics. 2006 Mar;62(1):85-96 [PMID: 16542233]
  8. J Obes. 2012;2012:735465 [PMID: 21961058]
  9. Am J Epidemiol. 2016 Aug 1;184(3):249-58 [PMID: 27416840]
  10. Biometrics. 2005 Dec;61(4):962-73 [PMID: 16401269]
  11. Blood Press. 2015 Apr;24(2):96-102 [PMID: 25548966]
  12. Biom J. 2019 Nov;61(6):1507-1525 [PMID: 31449324]
  13. Pharmacoepidemiol Drug Saf. 2011 Mar;20(3):317-20 [PMID: 21351315]
  14. Stat Med. 2015 May 10;34(10):1645-58 [PMID: 25628185]
  15. J Am Stat Assoc. 2015 Jun 1;110(510):681-696 [PMID: 26190876]
  16. Biometrics. 2017 Dec;73(4):1111-1122 [PMID: 28273693]
  17. Epidemiology. 2021 May 1;32(3):393-401 [PMID: 33591058]
  18. Can J Stat. 2015 Dec;43(4):498-518 [PMID: 26877582]
  19. J Am Stat Assoc. 2010 Mar 1;105(489):312-323 [PMID: 20676354]
  20. Biometrika. 2007 Aug 1;94(3):553-568 [PMID: 19343105]
  21. Stat Med. 2010 Feb 10;29(3):337-46 [PMID: 19960510]
  22. Stat Methods Med Res. 2020 Sep;29(9):2445-2469 [PMID: 31939336]
  23. Biometrika. 2013;100(3):671-680 [PMID: 24795484]
  24. Stat Med. 2004 Oct 15;23(19):2937-60 [PMID: 15351954]
  25. Stat Methods Med Res. 2012 Feb;21(1):7-30 [PMID: 21075803]

MeSH Term

Probability
Causality
Computer Simulation
Propensity Score
Models, Statistical

Word Cloud

Created with Highcharts 10.0.0inferenceinverseprobabilityaveragetreatmenteffectmeasurementerrorweightingestimationmethodfeaturesestimatorvariableselectionframeworkcausalvariantscommonlyemployedestimatemethodshoweverchallengedpresenceirrelevantpre-treatmentvariablesIgnoringnaivelyapplyingusualproceduresmaytypicallyyieldbiasedresultsarticledevelopestimatingtakenaccountestablishtheoreticalpropertiesresultingcarrynumericalstudiesassessfinitesampleperformanceproposedEstimationsimultaneouslyaddressedpotentialconfoundersCausalweightpropensityscoresimulation–extrapolation

Similar Articles

Cited By