Grounding Mental Representations in a Virtual Multi-Level Functional Framework.

Pierre Bonzon
Author Information
  1. Pierre Bonzon: University of Lausanne, Faculty of Economics, Dept of Information Systems, CH. ORCID

Abstract

According to the associative theory of learning, reactive behaviors described by stimulus-response pairs result in the progressive wiring of a plastic brain. In contrast, flexible behaviors are supposedly driven by neurologically grounded mental states that involve computations on informational contents. These theories appear complementary, but are generally opposed to each other. The former is favored by neuro-scientists who explore the low-level biological processes supporting cognition, and the later by cognitive psychologists who look for higher-level structures. This situation can be clarified through an analysis that independently defines abstract neurological and informational functionalities, and then relate them through a virtual interface. This framework is validated through a modeling of the first stage of Piaget's cognitive development theory, whose reported end experiments demonstrate the emergence of mental representations of object displacements. The neural correlates grounding this emergence are given in the isomorphic format of an . As a child's exploration of the world progresses, his mental models will eventually include representations of space, time and causality. Only then epistemological concepts, such as , will give rise to higher level mental representations in a possibly richer propositional format. This raises the question of which additional neurological functionalities, if any, would be required in order to include these extensions into a comprehensive grounded model. We relay previously expressed views, which in summary hypothesize that the has evolved from , to suggest that the functionality of could well provide the sufficient means for grounding cognitive capacities.

Keywords

References

  1. Comput Intell Neurosci. 2013;2013:149329 [PMID: 23935605]
  2. Hippocampus. 2008;18(12):1142-56 [PMID: 19021254]
  3. J Physiol. 1965 Nov;181(1):1-27 [PMID: 5866283]
  4. Biol Cybern. 2013 Jun;107(3):263-88 [PMID: 23559034]
  5. Nature. 2002 Jun 20;417(6891):803-6 [PMID: 12075334]
  6. Front Neurorobot. 2020 Dec 03;14:570358 [PMID: 33424574]
  7. Nature. 2012 Mar 22;484(7394):381-5 [PMID: 22441246]
  8. Cell. 2015 Oct 08;163(2):456-92 [PMID: 26451489]
  9. J Neurosci. 2018 Aug 8;38(32):7143-7157 [PMID: 29959234]
  10. Front Neural Circuits. 2019 Apr 24;13:22 [PMID: 31068793]
  11. Conscious Cogn. 2010 Sep;19(3):838-46 [PMID: 20739191]
  12. Top Cogn Sci. 2015 Apr;7(2):230-42 [PMID: 25823496]
  13. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  14. Cognition. 2021 Aug;213:104533 [PMID: 33375954]
  15. J Math Psychol. 2017 Feb;76(Pt B):59-64 [PMID: 30147145]
  16. J Math Psychol. 2017 Feb;76(B):65-79 [PMID: 31745373]
  17. Cogn Neurodyn. 2015 Aug;9(4):359-70 [PMID: 26157510]
  18. Neuron. 2015 Oct 7;88(1):110-26 [PMID: 26447576]
  19. Curr Opin Neurobiol. 2015 Dec;35:101-9 [PMID: 26280931]
  20. Nat Neurosci. 2012 Mar 27;15(4):507-9 [PMID: 22449960]
  21. Neuron. 2015 Nov 4;88(3):565-77 [PMID: 26593093]
  22. Behav Brain Sci. 2001 Feb;24(1):1-34; discussion 34-86 [PMID: 11515285]
  23. Top Cogn Sci. 2015 Apr;7(2):243-58 [PMID: 25726919]
  24. Ann N Y Acad Sci. 2017 May;1396(1):108-125 [PMID: 28548457]
  25. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  26. Psychon Bull Rev. 2017 Apr;24(2):557-565 [PMID: 27418259]
  27. J Math Psychol. 2011 Aug 1;55(4):273-289 [PMID: 21841845]
  28. Neuroscience. 2014 Sep 26;277:872-84 [PMID: 25080159]
  29. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668): [PMID: 25823871]
  30. Annu Rev Neurosci. 2008;31:69-89 [PMID: 18284371]
  31. Cognition. 1985 Aug;20(3):191-208 [PMID: 4064606]
  32. Brain Res. 1971 Nov;34(1):171-5 [PMID: 5124915]
  33. Curr Biol. 2019 Mar 18;29(6):979-990.e4 [PMID: 30853437]
  34. Science. 2015 May 29;348(6238):1007-13 [PMID: 26023136]
  35. Neuron. 2003 Jan 9;37(1):135-47 [PMID: 12526779]
  36. Cogn Neurodyn. 2017 Aug;11(4):327-353 [PMID: 28761554]
  37. Nat Neurosci. 2018 Sep;21(9):1148-1160 [PMID: 30127428]
  38. J Comput Neurosci. 2020 May;48(2):149-159 [PMID: 32125562]
  39. Science. 2017 Oct 27;358(6362):470-477 [PMID: 29074766]
  40. Science. 1997 Jan 10;275(5297):213-5 [PMID: 8985014]
  41. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 [PMID: 6953413]
  42. Cognition. 2015 Feb;135:14-20 [PMID: 25496988]
  43. Psychol Rev. 2020 Nov;127(6):1163-1198 [PMID: 32772529]
  44. Learn Mem. 2006 Nov-Dec;13(6):669-80 [PMID: 17142299]
  45. Brain Res. 2008 Nov 25;1242:4-12 [PMID: 18602905]
  46. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2695-703 [PMID: 22927568]
  47. J Physiol. 1973 Jul;232(2):331-56 [PMID: 4727084]
  48. Psychol Rev. 2004 Oct;111(4):1036-60 [PMID: 15482072]
  49. Cereb Cortex. 2004 Nov;14(11):1185-99 [PMID: 15142952]
  50. Psychol Rev. 2008 Jan;115(1):1-43 [PMID: 18211183]
  51. Neurosci Res Program Bull. 1977 Oct;15(3):313-9, 323-553 [PMID: 414150]
  52. Front Syst Neurosci. 2019 Dec 06;13:75 [PMID: 31866837]
  53. Perception. 2012;41(9):1017-23 [PMID: 23409366]
  54. Neuron. 2015 Oct 21;88(2):264-76 [PMID: 26494276]
  55. Behav Brain Sci. 1998 Oct;21(5):615-28; discussion 629-65 [PMID: 10097022]
  56. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]
  57. Trends Neurosci. 1995 Jan;18(1):30-6 [PMID: 7535488]
  58. Front Comput Neurosci. 2019 Feb 12;13:1 [PMID: 30809141]
  59. J Comput Neurosci. 2007 Dec;23(3):349-98 [PMID: 17629781]
  60. Psychol Rev. 2006 Apr;113(2):273-99 [PMID: 16637762]

Word Cloud

Created with Highcharts 10.0.0mentalcognitiverepresentationsassociativetheorybehaviorsgroundedinformationalcontentsneurologicalfunctionalitiesvirtualdevelopmentemergencegroundingformatwillincluderepresentationalAccordinglearningreactivedescribedstimulus-responsepairsresultprogressivewiringplasticbraincontrastflexiblesupposedlydrivenneurologicallystatesinvolvecomputationstheoriesappearcomplementarygenerallyopposedformerfavoredneuro-scientistsexplorelow-levelbiologicalprocessessupportingcognitionlaterpsychologistslookhigher-levelstructuressituationcanclarifiedanalysisindependentlydefinesabstractrelateinterfaceframeworkvalidatedmodelingfirststagePiaget'swhosereportedendexperimentsdemonstrateobjectdisplacementsneuralcorrelatesgivenisomorphicchild'sexplorationworldprogressesmodelseventuallyspacetimecausalityepistemologicalconceptsgiverisehigherlevelpossiblyricherpropositionalraisesquestionadditionalrequiredorderextensionscomprehensivemodelrelaypreviouslyexpressedviewssummaryhypothesizeevolvedsuggestfunctionalitywellprovidesufficientmeanscapacitiesGroundingMentalRepresentationsVirtualMulti-LevelFunctionalFrameworkmemoryrepresentationvehiclemachine

Similar Articles

Cited By