ImaGene: a web-based software platform for tumor radiogenomic evaluation and reporting.

Shrey S Sukhadia, Aayush Tyagi, Vivek Venkataraman, Pritam Mukherjee, Pratosh Prasad, Olivier Gevaert, Shivashankar H Nagaraj
Author Information
  1. Shrey S Sukhadia: Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  2. Aayush Tyagi: Yardi School of Artificial Intelligence, Indian Institute of Technology, New Delhi 110016, India.
  3. Vivek Venkataraman: Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
  4. Pritam Mukherjee: Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305-5101, USA.
  5. Pratosh Prasad: Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India.
  6. Olivier Gevaert: Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305-5101, USA. ORCID
  7. Shivashankar H Nagaraj: Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.

Abstract

Summary: Radiographic imaging techniques provide insight into the imaging features of tumor regions of interest, while immunohistochemistry and sequencing techniques performed on biopsy samples yield omics data. Relationships between tumor genotype and phenotype can be identified from these data through traditional correlation analyses and artificial intelligence (AI) models. However, the radiogenomics community lacks a unified software platform with which to conduct such analyses in a reproducible manner. To address this gap, we developed ImaGene, a web-based platform that takes tumor omics and imaging datasets as inputs, performs correlation analysis between them, and constructs AI models. ImaGene has several modifiable configuration parameters and produces a report displaying model diagnostics. To demonstrate the utility of ImaGene, we utilized data for invasive breast carcinoma (IBC) and head and neck squamous cell carcinoma (HNSCC) and identified potential associations between imaging features and nine genes (WT1, LGI3, SP7, DSG1, ORM1, CLDN10, CST1, SMTNL2, and SLC22A31) for IBC and eight genes (NR0B1, PLA2G2A, MAL, CLDN16, PRDM14, VRTN, LRRN1, and MECOM) for HNSCC. ImaGene has the potential to become a standard platform for radiogenomic tumor analyses due to its ease of use, flexibility, and reproducibility, playing a central role in the establishment of an emerging radiogenomic knowledge base.
Availability and implementation: www.ImaGene.pgxguide.org, https://github.com/skr1/Imagene.git.
Supplementary information: Supplementary data are available at https://github.com/skr1/Imagene.git.

References

  1. Int J Biol Sci. 2018 Apr 30;14(6):667-681 [PMID: 29904281]
  2. Sci Rep. 2021 Jan 15;11(1):1550 [PMID: 33452365]
  3. Prostate Cancer Prostatic Dis. 2016 Sep;19(3):322 [PMID: 27502740]
  4. Abdom Radiol (NY). 2019 Sep;44(9):3148-3157 [PMID: 31243486]
  5. PLoS One. 2013;8(1):e54082 [PMID: 23382867]
  6. Cancer. 2016 Mar 1;122(5):748-57 [PMID: 26619259]
  7. Histopathology. 2015 Jun;66(7):991-1002 [PMID: 25393083]
  8. Chin Clin Oncol. 2017 Aug;6(4):40 [PMID: 28841802]
  9. EBioMedicine. 2019 Oct;48:364-376 [PMID: 31521610]
  10. Oncol Lett. 2020 Jul;20(1):373-381 [PMID: 32565963]
  11. Mol Cancer. 2010 Nov 22;9:296 [PMID: 21092172]
  12. Genomics Proteomics Bioinformatics. 2017 Aug;15(4):220-235 [PMID: 28813639]
  13. Int J Biol Sci. 2020 Feb 24;16(8):1474-1480 [PMID: 32210734]
  14. Radiology. 2014 Oct;273(1):168-74 [PMID: 24827998]
  15. Abdom Radiol (NY). 2019 Jun;44(6):2021-2029 [PMID: 29926137]
  16. J Digit Imaging. 2013 Dec;26(6):1045-57 [PMID: 23884657]
  17. Nat Genet. 2015 Jul;47(7):736-45 [PMID: 26005866]
  18. Sci Rep. 2015 Aug 21;5:13413 [PMID: 26292924]
  19. Br J Cancer. 2012 Feb 14;106(4):756-62 [PMID: 22333708]
  20. Diagn Interv Radiol. 2019 Nov;25(6):485-495 [PMID: 31650960]
  21. Radiology. 2016 Feb;278(2):563-77 [PMID: 26579733]
  22. Int J Mol Sci. 2022 Jan 19;23(3): [PMID: 35162973]
  23. Stem Cell Res. 2018 Mar;27:46-56 [PMID: 29324254]
  24. Radiol Imaging Cancer. 2020 May 15;2(3):e190039 [PMID: 32550599]
  25. Abdom Radiol (NY). 2019 Jun;44(6):1960-1984 [PMID: 31049614]
  26. Radiology. 2014 Aug;272(2):374-84 [PMID: 24702725]
  27. Mol Med Rep. 2018 Mar;17(3):3993-4002 [PMID: 29257304]
  28. Radiology. 2018 Jan;286(1):307-315 [PMID: 28727543]
  29. Sci Data. 2018 Oct 16;5:180202 [PMID: 30325352]
  30. Bioengineered. 2021 Dec;12(1):8822-8832 [PMID: 34654351]
  31. Insights Imaging. 2020 Aug 17;11(1):94 [PMID: 32804260]
  32. Sci Rep. 2020 May 20;10(1):8341 [PMID: 32433524]
  33. Cell Physiol Biochem. 2018;48(2):475-490 [PMID: 30016783]
  34. Acad Pathol. 2019 May 27;6:2374289519848353 [PMID: 31206012]
  35. Gigascience. 2020 Sep 17;9(9): [PMID: 32940333]
  36. Urology. 1994 Jan;43(1):60-6; discussion 66-7 [PMID: 8284886]
  37. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  38. Sci Data. 2017 Sep 19;4:170124 [PMID: 28925987]
  39. J Surg Oncol. 2010 Oct 1;102(5):454-61 [PMID: 20872948]
  40. Neural Dev. 2007 Oct 31;2:22 [PMID: 17973992]
  41. NPJ Breast Cancer. 2016;2: [PMID: 27853751]
  42. Phys Med. 2021 Mar;83:25-37 [PMID: 33684723]
  43. Oncogene. 2021 Jun;40(22):3859-3869 [PMID: 33972685]
  44. J Magn Reson Imaging. 2013 Oct;38(4):905-13 [PMID: 23908132]
  45. Am J Pathol. 2009 Sep;175(3):1235-45 [PMID: 19644015]
  46. Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979 [PMID: 29531073]
  47. Sci Rep. 2015 Dec 07;5:17787 [PMID: 26639025]
  48. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4009-14 [PMID: 23412337]
  49. Cancer Lett. 2011 Dec 1;311(1):85-95 [PMID: 21831520]
  50. Front Oncol. 2022 Jan 31;12:772686 [PMID: 35174083]
  51. Nat Cell Biol. 2012 Aug;14(8):838-49 [PMID: 22820376]
  52. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  53. Int J Oncol. 2020 Jul;57(1):43-53 [PMID: 32467997]
  54. Clin Cancer Res. 2020 Feb 15;26(4):862-869 [PMID: 31732521]
  55. BJU Int. 2009 Jun;103(12):1647-54 [PMID: 19154461]
  56. J Neurooncol. 2018 Feb;136(3):495-503 [PMID: 29168084]
  57. Radiology. 2016 Nov;281(2):382-391 [PMID: 27144536]
  58. JAMA. 2015 Jan 27;313(4):390-7 [PMID: 25626035]
  59. JCO Clin Cancer Inform. 2020 May;4:421-435 [PMID: 32383980]
  60. Insights Imaging. 2020 Jan 03;11(1):1 [PMID: 31901171]
  61. J Mol Med (Berl). 2017 Aug;95(8):873-886 [PMID: 28523467]
  62. Ann Cardiothorac Surg. 2017 Mar;6(2):119-130 [PMID: 28447000]
  63. PLoS One. 2019 Feb 20;14(2):e0212223 [PMID: 30785937]
  64. J Digit Imaging. 2012 Feb;25(1):14-24 [PMID: 22038512]
  65. Int J Biol Markers. 2020 Feb;35(1_suppl):47-50 [PMID: 32079469]
  66. Radiology. 2012 Aug;264(2):387-96 [PMID: 22723499]
  67. Transl Oncol. 2014 Oct 24;7(5):556-69 [PMID: 25389451]

Grants

  1. R01 CA260271/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0tumorImaGeneimagingdataplatformanalysesradiogenomictechniquesfeaturesomicsidentifiedcorrelationAImodelssoftwareweb-basedcarcinomaIBCHNSCCpotentialgeneshttps://githubcom/skr1/ImagenegitSummary:RadiographicprovideinsightregionsinterestimmunohistochemistrysequencingperformedbiopsysamplesyieldRelationshipsgenotypephenotypecantraditionalartificialintelligenceHoweverradiogenomicscommunitylacksunifiedconductreproduciblemanneraddressgapdevelopedtakesdatasetsinputsperformsanalysisconstructsseveralmodifiableconfigurationparametersproducesreportdisplayingmodeldiagnosticsdemonstrateutilityutilizedinvasivebreastheadnecksquamouscellassociationsnineWT1LGI3SP7DSG1ORM1CLDN10CST1SMTNL2SLC22A31eightNR0B1PLA2G2AMALCLDN16PRDM14VRTNLRRN1MECOMbecomestandarddueeaseuseflexibilityreproducibilityplayingcentralroleestablishmentemergingknowledgebaseAvailabilityimplementation:wwwpgxguideorgSupplementaryinformation:SupplementaryavailableImaGene:evaluationreporting

Similar Articles

Cited By