AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.

Tzu-Tang Lin, Yih-Yun Sun, Ching-Tien Wang, Wen-Chih Cheng, I-Hsuan Lu, Chung-Yen Lin, Shu-Hwa Chen
Author Information
  1. Tzu-Tang Lin: Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.
  2. Yih-Yun Sun: Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.
  3. Ching-Tien Wang: Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.
  4. Wen-Chih Cheng: Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.
  5. I-Hsuan Lu: Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.
  6. Chung-Yen Lin: Institute of Information Science, Academia Sinica, Taipei 115, Taiwan. ORCID
  7. Shu-Hwa Chen: TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.

Abstract

Motivation: Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning theory, it is reasonable to experiment with peptide drug design using methods.
Results: We collected the most up-to-date AVPs and used deep learning to construct a sequence-based binary classifier. A generative adversarial network was employed to augment the number of AVPs in the positive training dataset and enable our deep learning convolutional neural network (CNN) model to learn from the negative dataset. Our classifier outperformed other state-of-the-art classifiers when using the testing dataset. We have placed the trained classifiers on a user-friendly web server, AI4AVP, for the research community.
Availability and implementation: AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/; codes and datasets for the peptide GAN and the AVP predictor CNN are available at https://github.com/lsbnb/amp_gan and https://github.com/LinTzuTang/AI4AVP_predictor.
Supplementary information: Supplementary data are available at online.

References

  1. Bioinformatics. 2017 Sep 01;33(17):2753-2755 [PMID: 28472272]
  2. Nat Mach Intell. 2021 Jun;3(6):536-544 [PMID: 34179690]
  3. Bioinformatics. 2018 Jul 15;34(14):2499-2502 [PMID: 29528364]
  4. Sci Rep. 2020 Nov 6;10(1):19260 [PMID: 33159146]
  5. Int J Pept Res Ther. 2021;27(1):149-168 [PMID: 32427225]
  6. Cell Syst. 2020 Jul 22;11(1):49-62.e16 [PMID: 32711843]
  7. Bioinformatics. 2010 Mar 1;26(5):680-2 [PMID: 20053844]
  8. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  9. Nucleic Acids Res. 2014 Jan;42(Database issue):D1147-53 [PMID: 24285301]
  10. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  11. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34297817]
  12. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W199-204 [PMID: 22638580]
  13. Nucleic Acids Res. 2021 Jan 8;49(D1):D288-D297 [PMID: 33151284]
  14. Comput Biol Med. 2019 Apr;107:127-130 [PMID: 30802694]
  15. Cell Mol Life Sci. 2019 Sep;76(18):3525-3542 [PMID: 31101936]
  16. Sci Data. 2019 Aug 13;6(1):148 [PMID: 31409791]
  17. Nucleic Acids Res. 2020 Jul 9;48(12):6403-6412 [PMID: 32424410]
  18. mSystems. 2021 Dec 21;6(6):e0029921 [PMID: 34783578]
  19. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  20. Front Pharmacol. 2020 Sep 15;11:575444 [PMID: 33041819]
  21. Bioinformatics. 2019 Jul 15;35(14):i99-i107 [PMID: 31510693]
  22. Int J Mol Sci. 2019 Nov 15;20(22): [PMID: 31731751]
  23. Int J Antimicrob Agents. 2012 Apr;39(4):346-51 [PMID: 22325123]

Word Cloud

Created with Highcharts 10.0.0AVPsdeeplearningpeptidenetworkdatasetpeptidesnumberusingclassifiergenerativeadversarialCNNclassifiersAI4AVPpredictoravailablehttps://githubdataMotivation:AntiviralvarioussourcessuggestpossibilitydevelopingdrugstreatingviraldiseasesincreasingidentifiedadvancestheoryreasonableexperimentdrugdesignmethodsResults:collectedup-to-dateusedconstructsequence-basedbinaryemployedaugmentpositivetrainingenableconvolutionalneuralmodellearnnegativeoutperformedstate-of-the-arttestingplacedtraineduser-friendlywebserverresearchcommunityAvailabilityimplementation:freelyaccessiblehttp://axpiissinicaedutw/AI4AVP/codesdatasetsGANAVPcom/lsbnb/amp_gancom/LinTzuTang/AI4AVP_predictorSupplementaryinformation:SupplementaryonlineAI4AVP:antiviralapproachaugmentation

Similar Articles

Cited By