Heptadecanoic acid and pentadecanoic acid crosstalk with fecal-derived gut microbiota are potential non-invasive biomarkers for chronic atrophic gastritis.

Xiao Gai, Peng Qian, Benqiong Guo, Yixin Zheng, Zhihao Fu, Decai Yang, Chunmei Zhu, Yang Cao, Jingbin Niu, Jianghong Ling, Jin Zhao, Hailian Shi, Guoping Liu
Author Information
  1. Xiao Gai: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  2. Peng Qian: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  3. Benqiong Guo: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  4. Yixin Zheng: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  5. Zhihao Fu: School of Computer Science, Fudan University, Shanghai, China.
  6. Decai Yang: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  7. Chunmei Zhu: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  8. Yang Cao: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  9. Jingbin Niu: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  10. Jianghong Ling: Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  11. Jin Zhao: School of Computer Science, Fudan University, Shanghai, China.
  12. Hailian Shi: Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  13. Guoping Liu: School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Abstract

Background: Chronic atrophic gastritis (CAG), premalignant lesions of gastric cancer (GC), greatly increases the risk of GC. Gastroscopy with tissue biopsy is the most commonly used technology for CAG diagnosis. However, due to the invasive nature, both ordinary gastroscope and painless gastroscope result in a certain degree of injury to the esophagus as well as inducing psychological pressure on patients. In addition, patients need fast for at least half a day and take laxatives.
Methods: In this study, fecal metabolites and microbiota profiles were detected by metabolomics and 16S rRNA V4-V5 region sequencing.
Results: Alteration of fecal metabolites and microbiota profiles was found in CAG patients, compared with healthy volunteers. To identify the most relevant features, 7 fecal metabolites and 4 microbiota were selected by random forest (RF), from A and B sample sets, respectively. Furthermore, we constructed support vector machines (SVM) classifification model using 7 fecal metabolites or 4 gut microbes, or 7 fecal metabolites with 4 gut microbes, respectively, on C sample set. The accuracy of classifification model was 0.714, 0.857, 0.857, respectively, and the AUC was 0.71, 0.88, 0.9, respectively. In C sample set, Spearman's rank correlation analysis demonstrated heptadecanoic acid and pentadecanoic acid were signifificantly negatively correlated to and , respectively. We constructed SVM classifification model using 2 correlated fecal metabolites and 2 correlated gut microbes on C sample set. The accuracy of classification model was 0.857, and the AUC was 0.88.
Conclusion: Therefore, heptadecanoic acid and pentadecanoic acid, crosstalk with fecal-derived gut microbiota namely Erysipelotrichaceae_UCG-003 and Haemophilus, are potential non-invasive biomarkers for CAG diagnosis.

Keywords

References

  1. Adv Nutr. 2016 Jul 15;7(4):730-4 [PMID: 27422507]
  2. J Appl Stat. 2019;46(16):2987-3007 [PMID: 33012942]
  3. Br Med J (Clin Res Ed). 1984 Sep 22;289(6447):717-9 [PMID: 6434053]
  4. Eur J Pharmacol. 2021 Oct 05;908:174335 [PMID: 34265298]
  5. Am J Clin Nutr. 2010 Nov;92(5):1214-22 [PMID: 20861175]
  6. Am J Clin Nutr. 2007 Jul;86(1):189-97 [PMID: 17616780]
  7. J Pharm Biomed Anal. 2017 Jan 5;132:77-86 [PMID: 27697573]
  8. Gut Microbes. 2016 May 3;7(3):189-200 [PMID: 26963409]
  9. Geroscience. 2019 Dec;41(6):907-921 [PMID: 31620923]
  10. J Pharm Pharmacol. 2020 May;72(5):748-760 [PMID: 32128823]
  11. Curr Med Res Opin. 2018 Nov;34(11):2023-2029 [PMID: 30175627]
  12. Cell Host Microbe. 2014 Mar 12;15(3):382-392 [PMID: 24629344]
  13. Anesth Analg. 2004 Dec;99(6):1699-1702 [PMID: 15562057]
  14. J Genet Genomics. 2021 Sep 20;48(9):771-780 [PMID: 34419617]
  15. Sci Rep. 2017 Mar 30;7:45580 [PMID: 28358020]
  16. Helicobacter. 2019 Feb;24(1):e12547 [PMID: 30440093]
  17. J Alzheimers Dis. 2021;79(4):1691-1700 [PMID: 33492292]
  18. Evid Based Complement Alternat Med. 2018 Sep 17;2018:6030929 [PMID: 30310411]
  19. BMC Gastroenterol. 2013 Aug 22;13:131 [PMID: 23964800]
  20. Inflamm Bowel Dis. 2009 Oct;15(10):1476-84 [PMID: 19291781]
  21. Adv Sci (Weinh). 2022 May;9(16):e2200263 [PMID: 35285172]
  22. Imeta. 2022 Mar 16;1(2):e12 [PMID: 38868573]
  23. J Cancer Prev. 2015 Mar;20(1):25-40 [PMID: 25853101]
  24. Front Physiol. 2018 Jan 08;8:1122 [PMID: 29358923]
  25. J Infect Dis. 2015 Jan 1;211(1):19-27 [PMID: 25057045]
  26. Biochim Biophys Acta. 2010 Nov;1801(11):1175-83 [PMID: 20691280]
  27. Chin Med. 2021 May 1;16(1):37 [PMID: 33933119]
  28. Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):41-51 [PMID: 29275361]
  29. Sci Rep. 2017 Oct 30;7(1):14362 [PMID: 29084954]
  30. Oncol Rep. 2019 Jun;41(6):3499-3507 [PMID: 31002344]
  31. Front Cell Infect Microbiol. 2015 Nov 20;5:84 [PMID: 26636046]
  32. Acta Biomed. 2018 Dec 17;89(8-S):88-92 [PMID: 30561424]
  33. Cell Mol Immunol. 2021 Apr;18(4):866-877 [PMID: 33707689]
  34. J Proteome Res. 2013 Jun 7;12(6):2987-99 [PMID: 23631562]
  35. Am J Clin Nutr. 2014 Dec;100(6):1532-40 [PMID: 25411288]
  36. Minerva Gastroenterol Dietol. 2017 Dec;63(4):345-354 [PMID: 28206729]
  37. Protein Cell. 2018 May;9(5):416-431 [PMID: 29725935]
  38. PLoS One. 2012;7(6):e39743 [PMID: 22761885]
  39. Nat Biotechnol. 2006 Dec;24(12):1565-7 [PMID: 17160063]
  40. Microbiome. 2022 Feb 21;10(1):35 [PMID: 35189961]
  41. Front Cell Infect Microbiol. 2017 Oct 26;7:455 [PMID: 29124041]
  42. Scand J Gastroenterol. 2019 Apr;54(4):391-396 [PMID: 30945954]
  43. Medicine (Baltimore). 2020 Nov 6;99(45):e23061 [PMID: 33157963]
  44. Singapore Med J. 2012 May;53(5):318-24 [PMID: 22584971]
  45. Front Pharmacol. 2020 Sep 15;11:586954 [PMID: 33041831]
  46. Cell. 2014 Aug 28;158(5):1000-1010 [PMID: 25171403]
  47. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  48. Curr Ther Res Clin Exp. 2011 Dec;72(6):262-72 [PMID: 24648594]
  49. PLoS One. 2020 Nov 11;15(11):e0236203 [PMID: 33175875]
  50. Am J Clin Nutr. 2013 Apr;97(4):854-61 [PMID: 23407305]
  51. Nat Metab. 2019 Jan;1(1):34-46 [PMID: 32694818]
  52. J Gastroenterol Hepatol. 2011 Aug;26(8):1290-7 [PMID: 21443661]
  53. Anal Chem. 2021 Apr 13;93(14):5709-5717 [PMID: 33797874]
  54. PLoS One. 2014 Mar 06;9(6):e90849 [PMID: 24603888]
  55. Am J Surg Pathol. 1996 Oct;20(10):1161-81 [PMID: 8827022]
  56. Front Cell Infect Microbiol. 2021 Aug 19;11:634780 [PMID: 34490132]

MeSH Term

Humans
Gastrointestinal Microbiome
Gastritis, Atrophic
RNA, Ribosomal, 16S
Feces
Biomarkers
Firmicutes

Chemicals

pentadecanoic acid
margaric acid
RNA, Ribosomal, 16S
Biomarkers

Word Cloud

Created with Highcharts 10.0.00fecalmetabolitesmicrobiotagutacidrespectivelyCAGsamplemodelatrophicgastritispatients74classifificationmicrobesCset857pentadecanoiccorrelatedGCdiagnosisgastroscopeprofilesrandomforestconstructedsupportvectorSVMusingaccuracyAUC88heptadecanoic2crosstalkfecal-derivedpotentialnon-invasivebiomarkerschronicBackground:ChronicpremalignantlesionsgastriccancergreatlyincreasesriskGastroscopytissuebiopsycommonlyusedtechnologyHoweverdueinvasivenatureordinarypainlessresultcertaindegreeinjuryesophaguswellinducingpsychologicalpressureadditionneedfastleasthalfdaytakelaxativesMethods:studydetectedmetabolomics16SrRNAV4-V5regionsequencingResults:AlterationfoundcomparedhealthyvolunteersidentifyrelevantfeaturesselectedRFBsetsFurthermoremachines714719Spearman'srankcorrelationanalysisdemonstratedsignifificantlynegativelyclassificationConclusion:ThereforenamelyErysipelotrichaceae_UCG-003HaemophilusHeptadecanoicmetabonomicsmachine

Similar Articles

Cited By (1)