Optical and theoretical study of strand recognition by nucleic acid probes.

Ivana Domljanovic, Maria Taskova, Pâmella Miranda, Gerald Weber, Kira Astakhova
Author Information
  1. Ivana Domljanovic: Department of Chemistry, Technical University of Denmark, 206-207 Kongens, 2800, Lyngby, Denmark.
  2. Maria Taskova: Department of Chemistry, Technical University of Denmark, 206-207 Kongens, 2800, Lyngby, Denmark.
  3. Pâmella Miranda: Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil.
  4. Gerald Weber: Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil. ORCID
  5. Kira Astakhova: Department of Chemistry, Technical University of Denmark, 206-207 Kongens, 2800, Lyngby, Denmark. kiraas@kemi.dtu.dk. ORCID

Abstract

Detection of nucleic acids is crucial to the study of their basic properties and consequently to applying this knowledge to the determination of pathologies such as cancer. In this work, our goal is to determine new trends for creating diagnostic tools for cancer driver mutations. Herein, we study a library of natural and modified oligonucleotide duplexes by a combination of optical and theoretical methods. We report a profound effect of additives on the duplexes, including nucleic acids as an active crowder. Unpredictably and inconsistent with DNA+LNA/RNA duplexes, locked nucleic acids contribute poorly to mismatch discrimination in the DNA+LNA/DNA duplexes. We develop a theoretical framework that explains poor mismatch discrimination in KRAS oncogene. We implement our findings in a bead-bait genotyping assay to detect mutated human cancer RNA. The performance of rationally designed probes in this assay is superior to the LNA-primer polymerase chain reaction, and it agrees with sequencing data.

References

  1. Methods Mol Biol. 2016;1392:71-82 [PMID: 26843048]
  2. Chembiochem. 2012 Jul 9;13(10):1509-19 [PMID: 22761036]
  3. Acc Chem Res. 2011 Nov 15;44(11):1172-81 [PMID: 21718008]
  4. PLoS One. 2016 Mar 21;11(3):e0151654 [PMID: 26999437]
  5. Biophys Chem. 2019 Aug;251:106189 [PMID: 31129553]
  6. Nucleic Acids Res. 2015 May 19;43(9):4650-60 [PMID: 25870407]
  7. Cancer Lett. 2017 Jan 1;384:86-93 [PMID: 27725226]
  8. Angew Chem Int Ed Engl. 2016 Feb 24;55(9):3224-8 [PMID: 26833452]
  9. PLoS Comput Biol. 2016 Nov 28;12(11):e1005122 [PMID: 27893768]
  10. Methods Appl Fluoresc. 2019 Feb 19;7(2):025002 [PMID: 30690439]
  11. J Pharm Pharmacol. 2002 Mar;54(3):315-23 [PMID: 11902797]
  12. Bioconjug Chem. 2016 Mar 16;27(3):840-8 [PMID: 26895222]
  13. Biophys Chem. 2017 Nov;230:62-67 [PMID: 28965786]
  14. Bioconjug Chem. 2011 Dec 21;22(12):2546-57 [PMID: 22073970]
  15. Bioorg Med Chem. 2008 Jan 1;16(1):94-9 [PMID: 17920888]
  16. Biochemistry. 2000 Sep 19;39(37):11270-81 [PMID: 10985772]
  17. Mol Med. 2013 Feb 08;18:1519-26 [PMID: 23255073]
  18. Nucleic Acids Res. 2013 Jan 7;41(1):e30 [PMID: 23087379]
  19. J Am Chem Soc. 2013 Feb 20;135(7):2423-6 [PMID: 23379691]
  20. Biomolecules. 2018 Sep 26;8(4): [PMID: 30261607]
  21. Nucleic Acids Res. 2009 Apr;37(6):1713-25 [PMID: 19190094]
  22. Nucleic Acids Res. 2011 Mar;39(5):1894-902 [PMID: 21071398]
  23. Biochim Biophys Acta Gen Subj. 2017 Feb;1861(2):178-197 [PMID: 27842220]
  24. Cancer Sci. 2016 Jul;107(7):936-43 [PMID: 27116474]
  25. Chem Commun (Camb). 2013 Jan 18;49(5):511-3 [PMID: 23201901]
  26. J Phys Chem B. 2017 Jun 15;121(23):5688-5698 [PMID: 28520430]
  27. Clin Chim Acta. 2016 Jun 1;457:75-80 [PMID: 27071699]
  28. Bioconjug Chem. 2017 Mar 15;28(3):768-774 [PMID: 28292178]
  29. Molecules. 2015 Jan 14;20(1):1377-409 [PMID: 25594347]
  30. Nat Commun. 2017 Jul 10;8:15982 [PMID: 28691701]
  31. J Mol Biol. 2009 Oct 16;393(1):227-36 [PMID: 19682997]
  32. Sci Rep. 2018 Jan 16;8(1):844 [PMID: 29339733]
  33. Oncotarget. 2017 Apr 13;8(32):52708-52723 [PMID: 28881764]
  34. Chembiochem. 2019 Feb 15;20(4):587-594 [PMID: 30211970]
  35. Front Pharmacol. 2018 Sep 20;9:1050 [PMID: 30294272]
  36. Bioconjug Chem. 1993 Mar-Apr;4(2):105-11 [PMID: 7873641]
  37. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3670-5 [PMID: 10097095]
  38. Chem Commun (Camb). 2013 Nov 25;49(91):10751-3 [PMID: 24107917]
  39. Environ Health Toxicol. 2014 Sep 11;29:e2014007 [PMID: 25234413]
  40. Sci Rep. 2017 Sep 8;7(1):11043 [PMID: 28887512]
  41. Methods Mol Biol. 2020;2063:37-44 [PMID: 31667761]
  42. J Mol Diagn. 2011 Jan;13(1):64-73 [PMID: 21227396]
  43. Oncotarget. 2017 Mar 14;8(11):17936-17944 [PMID: 28212557]
  44. Bioinformatics. 2013 May 15;29(10):1345-7 [PMID: 23505297]
  45. PLoS One. 2015 Aug 27;10(8):e0136720 [PMID: 26312489]
  46. Int J Mol Sci. 2014 Dec 12;15(12):23090-140 [PMID: 25514413]
  47. Biophys Chem. 2015 Mar;198:36-44 [PMID: 25645886]
  48. Gac Med Mex. 2017 Mar - Apr;153(2):238-250 [PMID: 28474710]

Grants

  1. 13152/Villum Fonden (Villum Foundation)

Word Cloud

Created with Highcharts 10.0.0nucleicduplexesacidsstudycancertheoreticalmismatchdiscriminationassayprobesDetectioncrucialbasicpropertiesconsequentlyapplyingknowledgedeterminationpathologiesworkgoaldeterminenewtrendscreatingdiagnostictoolsdrivermutationsHereinlibrarynaturalmodifiedoligonucleotidecombinationopticalmethodsreportprofoundeffectadditivesincludingactivecrowderUnpredictablyinconsistentDNA+LNA/RNAlockedcontributepoorlyDNA+LNA/DNAdevelopframeworkexplainspoorKRASoncogeneimplementfindingsbead-baitgenotypingdetectmutatedhumanRNAperformancerationallydesignedsuperiorLNA-primerpolymerasechainreactionagreessequencingdataOpticalstrandrecognitionacid

Similar Articles

Cited By (2)